6RiDTask User’s Buide

November 1985

COPYRIGHT (C) 1985 GRiD Systems Corporation
2535 Garcia Avenue

Mountain View, CA 94043

(413) 961-4800

Manual Name: GRiDTask User’s BGuide

Order Number (Manual): 021250-44
Order Number (GRiDTask Software): 021250
Issue date: November 1985

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, photocopy, recording, or otherwise, without the prior written
permission of GRiD Systems Corporation.

The information in this document is subject to change without notice.

NEITHER GRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRESSED OR
IMPLIED WARRANTY, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTARBRILITY, QUALITY, OR FITNESS FOR A PARTICULAR PURPOSE. GRiD
Systems Corporation makes no representation as to the accuracy or adequacy
of this document. GRiD Systems Corporation has no obligation to update or
keep current the information contained in this document.

GRiD Systems Corporation’s software products are copyrighted by and shall
remain the property of GRiD Systems Corporation.

UNDER NO CIRCUMSTANCES WILL GRiD SYSTEMS CORPORATION BE LIABLE FOR ANY
LOSS OR OTHER DAMAGES ARISING OUT OF THE USE OF THIS MANUAL.

BRiD is a trademark of the GRiD Systems Corporation.

6RiDTask Manual
Table of Contents

Chapter 1 - BRiDTask Overview

Chapter 2 - BRiDTask Concepts

Chapter 3 - Language Constructs

Chapter 4 - BRiDTask Verbs

INTRO
ADDKEYS
APPENDF ILE
ASC

BREAK,
BREAKONKEY
BREAKRESET
CELL$
CENTER
CHANBEKIND$
CHARWIDTH
CHR$
CLEARMSG
CLEARSCREEN
COMMANDL INE
COMMENT
CONCHARINS
COPYFILE
CURSOR
CURX , CURY
DATE$
DELAY
DEVICE$
DIRECTORY$
DO

DOFORM$
DOMENU
ELSE

ENDIF

ENDP
ERASEBOX
ERASEFILE
ERRORCODE
ERRORSTR$
FALSE
FILEFORM
FINDTITLES$
FONT
FORMCHOICE
FORMCHOICES
FRAMEBOY

FREEFONT
GETFILES
IF/ELSE/ENDIF
INKEY®
INPUTS
INSTALL
INSTR
INVERTBOX
INVERTLINE
ITEMCOUNT
LASTKEY®
LASTMESSAGE $
LEN
LINEHEIGHT
LOCATE
MEMORY

MID%

PAINT
$PARSEONLY
PASSKEYS
PAUSE

FLAY

FRINT
FROCEDURE
READFILE®
RETURN
SCROLL
SCROLLBOX
SPEED
STACKMSG
STACKSIZE
STOP

STR$
SUBJECT®
SURSTITUTES
SUBSTRINGS
TASK
TASKWINDOW
TESTKEYS
TIMES

TITLE

TRUE
UPDATESCREEN
VAL

WEND
WHILE/WEND
WINDOWHE IGHT
WINDOWMDTION
WINDOWWIDTH
WRITEFILE

Chapter 4 - Mathematical Functions

ACOS
ATN
cas
EXP
1LOG
1.OG10
F1
RND
ROUND
SIN
SAR
TAN
TRUNC

Appendices

APFPENDIX
AFPPENDIX
APPENDIX
AFPENDIX
AFFENDIX
AFPPENDIX
AFFENDIX
AFPENDIX
APFENDIX

~ I o TmoOom>I

GRiDTask Verb Summary

Encoded Keystroke Chart

Key Decimal Value Chart
Suggestions on Getting Started
Reserved Words

Error Messages

Procedure Ferformance Issues
INSTALL Verb Development

Forms Verbs and Specifications

4-117

4-118
4-11%9
4-120
4-121
4-122
4-123
4-124
4-125
4-126
4-127
4-128
4-129
4-130

Chapter 1

Overview

1.1

What Is GRiDTask ? GRiDTask is an interpreted programming language:

it is used to create custom software systems built around GRiD
Management Tools or other GRiD-0S applications. GRiDTask
customized applications enhance the power of GRiD software by
presenting an interface in the context of the user’s business.
GRiDTask applications can take advantage of every capability of
GRiD’s Management Tools software. At the same time, the user
interface can be in familiar terms and so simple that the user
may need very little training to quickly learn the system.

In addition, GRiDTask can be used to automate repetitive tasks
such as accessing a mainframe, downloading data, and displaying
the data in a graph. With a custom GRiDTask application, the
entire sequence can be started with a single keystroke.
GRiDTask is also well-suited for creating tutorials and sales
presentations.

Features of GRiDTask

o A GRiDTask application can control any software running
under the GRiD-0S operating system, handling the interface
to multiple applications. The interface can be designed so
that the user merely makes selections in a menu or fills in
a form and the GRiDTask application does the rest.

o GRiDTask displays messages, text, graphics, and BRiDPaint
"canvas" images to supply information to the user. The
user can make choices or supply information in GRiDTask
menus, forms, or the familiar GRiD file form.

o GRiDTask controls windows: the application appears in one
window while GRiDTask menus, forms, messages, and graphics
appear in another window. The screen can be filled
completely with either the GRiDTask window or the
application window, or can be divided between the two
windows.

a GRiDTask supplies a set of flow control commands and a
procedure definition capability. OGRiDTask applications can
be written in separate modules controlled from a main
program. Modules are smaller and easier to develop and
maintain, allowing new applications and enhancements to be
developed quickly.

o GRiDTask provides sophisticated commands for manipulation
of strings and real numbers.

o The GRiDTask language can be extended to perform special

1=1

functions outside the normal scope of GRiD Management
Tools. To do this, procedures written in languages such as
Fascal or FLM can be "installed" as part of the GRiDTask
language.

GRiDTask Example
This uses GRiDPlot to display sales data. Figure 1-1 shows the

screen prior to a selection from the menu. Figure 1-2 displays
the graph drawn after selecting "Compare Monthly Totals".

After the selection is made, GRiDTask sends "keystrokes" to
GRiDPlot to select rows and columns of data, set graph options,
and draw the graph. With GRiDTask, the user does not need to
understand all the commands within GRiDFlot to draw a useful
graph.

1-2

January Febru

MNorth 191 89
South 1355 99
East 113 108
TOTALS 369 296 Sales Analysis
C re All Region
[Eoﬁ%§¥§ gongggg !§§a!§|
onthly Tren ines
Monthly Pie Breakdown
Exit
Figure 1-1. GRiDTask Application Using GRiDPlot
500
400 ¢
309
209
100} , /

January

February

fMorth ESouth [PJEast

March April ast

sz ang kea bo oont o

Figure 1-2.

Totals"

Graph Created by Selecting "Compare Monthly

What you can do with BGRiDTask
When using GRiDTask, you have complete control of the
computer’s display, keyboard, and any application software.

GRiDTask divides the computer’s display into two regions, or
windows - one for GRiDTask and the other for the currently
active application, such as GRiDPlot. GRiDTask allows you to
specify the size and location of the two windows, and what to
display in them. The size and location of the windows can be
changed as the GRiDTask application runs.

A GRiDTask program can send any key sequence to the
application, or allow the user to type freely until a specified
key is pressed, or allow the user to type only a desired key
sequence.

You can display GRiD menus and forms in the Task window and use
the input obtained from them in various ways.

All these capabilities combine to let you create custom
applications that can take full advantage of GRiD's software,
yet require practically no training to use.

Using GRiDTask vs. Other Programming Languages

GRiDTask is designed to control other applications such as
GRiDFile tp create a database report or GRiDFlot to graph
monthly sales volume. By comparison, programs written in
Fascal or PLM can efficiently control the system’s hardware and
operating system, but cannot interface to existing applications
as readily as GRiDTask.

GRiDTask is recommended if you want to create a custom
interface to existing applications. If performance is more
important than a custom interface, then conesider using a
language such as Pascal or PLM.

Note that you may wish to write self-contained GRiDTask
applications that do not need to control or use other GRiD
software. Forms and menue are easy to handle in GRiDTask, and
file manipulation is straightforward, so that you may wish to
write youwr complete application in GRiDTask.

1-4

1.2 Who Should Read This Manual This manual is for anyone writing an
application using GRiDTask. These include custom applications,
tutorials, and presentations.

GRiDTask is a relatively easy programming language to learn and
use. If you have had programming experience with high level
languages such as Pascal or Fortran, you should have no
difficulty learning GRiDTask. If you have had little or no
programming experience then you may benefit from some
assistance. This manual assumes familiarity with common
programming concepts.

Anyone using GRiDTask should alsoc be an accomplished user of
BRiD software — GRiDWrite, GRiDPlot, GRiDPlan, etc.

1.3 Software and Hardware Required For Writing a GRiDTask Program

Software Required to Develop GRiDTask Applications

GRiDTask is an interpreted language. GRiDWrite is used to
write the application, and the GRiDTask interpreter is used to
run the application. GRiDTask files to be interpreted by
GRiDTask have the kind "Task".

GRiDTask requires version 3.1.0 or later of GRiD software.

To write a GRiDTask application you need GRiDTask, GRiDWrite,
and any other GRiD applications that you wish to control. I+f
you want your program to display graphic images, you may need
GRiDFaint to create or modify those images.

Requirements for controlled application programs An
application must meet certain requirements in order to work
properly with GRiDTask.

Specifically, the application should

- Run under the GRiD-08 operating system.
- Run independently of window size.
- Process the WindowUpdate key properly.

All GRiD software meets these requirements. Any user-written
software meeting these criteria can also be run with GRiDTask.

Hardware Required

GRiDTask runs on any computer that supports the GRiD-0S
operating system. GRiD computer models with larger RAM space -
312K - and/or ROM capability support more powerful GRiDTask
applications.

GRiDTask uses a significant amount of RAM memory, so you should
check that enough RAM is available for GRiDTask, the

application, and any data files required. Currently GRiDTask
requires a minimum of about 40K of RAM.

A GRiDTask program running on one computer will operate on any
other computer running GRiD-0S. Note that there are two
possible exceptions to this: 1) due to RAM requirements, some
GRiDTask applications that run on a 512K RAM machine, for
instance, may exceed memory on a 256K RAM machine, 2)
different computer models have different screen sizes, 30 your
GRiDTask programs may need some modifications to allow for
this. GRiDTask programs can be written to adjust automatically
for different screen sizes.

1-6

Chapter 2
GRiDTask Concepts

This chapter covers concepts necessary to use GRiDTask effectively.
It will be very helpful to read this entire chapter before trying to
design or implement a GRiDTask application.

2.1 How BRiDTask Interacts with Applications GRiDTask can manipulate other
applications and execute commands within them. One application at a
time can be controlled from GRiDTask by sending keystrokes to the
application. For example, if you want to start GRiDFile from within
a GRiDTask program, the GRiDTask program fills in the File Form with
the name of a database file and provides a "confirm" keystroke.

This is the standard way to start an application from GRiDTask - by
filling in the File form, just as a user would. You may elect not
to shew the File Form on-screen, but your GRiDTask program must
still fill in the File form and provide the "confirm".

To send keys to an application from a GRiDTask program, the ADDKEYS
statement is used. The ADDKEYS statement is followed by a list of
the keys that you want passed to the application.

A GRiDTask program can also extract information from an application.
For example, the CELL$ function returns the value of the cell
currently outlined in a table, such as in GRiDFlan.

2.2 Windows A "window" is an area of the screen that an application uses to
display its output. GRiD-0S applications usually have one window
which occupies the entire screen. GRiDTask applications can have
two windows: the application window and the Task window. Window
areas are specified within the GRiDTask program, and can be changed
as the Task program runs.

The application window displays standard GRiD application software,
such as File forms, GRiDPlan or GRiDMaster. The Task window may
digplay a variety of items - menus, text, graphics, etc.: you
control these in the GRiDTask progtram.

Three methods are used to separate the two windows.

~ The Task window is surrounded by a one pixel wide frame. The
application window is not surrounded by a frame.

- There is a 4 pixel gap between the two windows.
- The two windows can use different fonts.
The Task window

You can set the size and location of the Task window using the
TASKWINDOW verb. The application window is automatically placed in

the largest space outside the Task window, whether that is above,
below, or to the left or right of the Task window.

Note that either the Task window or the application window may use
the entire available screen at a given time. In this case, the
other window is not visible to the user and may still do everything
that it normally does. This may be used to "hide" the application
(or the Task program) from the user.

The contents of the Task window
A GRiDTask program can display the following items in the Task
window.

- Menus

- Forms

- File forms

- Data-entry forms
- Text

- Messages

- Canvas images

- Braphics

The information obtained from the user via menus, forms, and File
forms can be used as variables within the BGRiDTask program.

Text displayed in the Task window can be in any font, or in multiple
fonts at a given time. OGRiDTask maintains an invisible cursor that
marks the next position to display text.

You can display Canvas images created in GRiDPaint. These may
include images created using Screenwatch and changed to Canvas files
in GRiDPaint. Also, graphic images can be "drawn" in the Task
window using Task verbs.

The Application Window

Within GRiDTask, the size of the application window is set to the
remainder of the available screen after the Task window is set. The
application display can be redrawn to fit the allotted area.
Applications essentially run the same under GRiDTask as they do
normally.

Note that even if the application is "hidden" (the entire window is
the "Task window"), or only partially displayed, it still operates
as it normally does.

Changing the size of windows

fAs the author of a GRiDTask program you need to keep track of the
location and size of the two windows and what is being displayed in
them. This requires knowledge of how an application reacts when its
window has changed.

When an application starts running, one of its first actions is to

¥
rJ

"ask" GRiD-0S how big its window is. The application formats its
output for proper display given these dimensions.

As an example of what this means, imagine that GRiDPlot’s window
uses all of the available screen. Then in your Task program, you
reduce its window to the top half of the available screen, and the
Task window displays text or graphics in the bottom half. At first,
GRiDFlot is not aware that its window has been reduced to half its
original size. It keeps running, and everything that would normally
be visible in the bottom half of the window is cut-off. Fie charts
become semi-circles, and most of the menus and forms are not visible
at all. There is nothing wrong with this, but it may not be what
you want. To correct this, youwr Task program can tell GRiDFlot to
recheck the size of its window using the UPDATESCREEN verb.

The UPDATESCREEN verb

When used in a GRiDTask program, the UPDATESCREEN verb sends a
special key value (WindowUpdateKey) to the application window. This
key value tells the application program to recheck its window size.

2.3 Keys and the Keyboard Just as you must keep track of where your windows
are and what is being displayed in them, you must also keep track of
the state of the keyboard.

Where do the keystrokes go?

Under normal operation, when an application is running without being
controlled under GRiDTask, everything you type on the keyboard goes
directly to the application. When an application is running under
BRiDTask, either the GRiDTask window or the application window can
receive keys.

When GRiDTask is running, it has control of the keyboard; anything
you type will go to GRiDTask first. What GRiDTask does with the
keys is controlled by your GRiDTask program. You can ignore the
keys from the keyboard, you can use them to get input from the user,
or you can pass them on to the application window.

Four ways to control the application

Since the application window is never connected directly to the
keyboard, all of its "keys" come from the GRiDTask program. There
are four ways that the GRiDTask program can send keys to the
application.

o PAUSE

The PAUSE verb instructs GRiDTask to pass all keys typed on the
keyboard directly to the application. In effect, PAUSE temporarily
passes control of the application to the user. However, GRiDTask
continues to watch the incoming keys. When a specified
"termination" key is pressed, GRiDTask stops passing keys to the
application window and begins to receive the keystrokes itself.

o PASSKEYS

The PASSKEYS verb is a variation of the PAUSE verb. The FASSKEYS
verb passes any of the keys in a selected group of keys to the
application, until one of the termination keys is pressed. The keys
to pass and the termination keys are specified with the PASSKEYS
verb. (note that the PAUSE verb passes all keys until a termination
key is pressed.) With the PASSKEYS verb, control of the application
is "handed off" to the user until pressing a termination key, when
control of the application is passed back to GRiDTask. Note that
the passed keys can be limited so that certain functions normally
available to a user of a GRiD application are blocked. Thus a user
could be allowed to look around within a database file, but might be
prevented from changing the data.

o ADDKEYS

The ADDKEYS verb automatically passes a specified sequence of keys
to the application window. The ADDKEYS verb does not interact with
the physical keyboard at all. However, ADDKEYS gives a result
similar to pressing the keys on a keyboard while running an
application.

o TESTKEYS

TESTKEYS is intended to be used in tutorials. The TESTKEYS verb
functions similarly to the ADDKEYS verb except that it requires the
user to press all the specified keys before they are passed to the
application. The required keys are displayed highlighted in the
Task window, and they un-highlight as they are pressed.

2.4 The File Form File forms operate somewhat differently when a GRiDTask
program is running.

When any application tries to display a File form, GRiDTask prevents
it from being displayed until a FILEFORM statement is executed in
the GRiDTask program. A FILEFORM statement specifies the file name
used to fill in the File form. This circumvents the normal method
of filling in a File form by typing on the keyboard.

The advantage of this is that even if the position of a file within

a8 subject changes, the File form will still be filled in correctly.
Refer to Chapter 4 for more information on the FILEFORM verb.

2-4

Chapter 3

Language Constructs

3.1

Variables

Variable Types
GRiDTask supports two types of variables: Real numbers and Strings.

These values can be as large or small as numbers having exponents
between -308 and +307. Note that when assigning values to GRiDTask
real variables, numbers are written without using exponential
notation. An example of a real variable value is:

RealVariable = 355.339644
Note that real variables can have integer values.
e.g. RealVariable = 9

There are functions that can turn a Real variable value into an

e e e e vt

integer value. These are the ROUND and TRUNC (truncate) functions.

characters long. Each character in a string is associated with a
value from O to 2595. See Appendix C for a list of these values.
There are several verbs within GRiDTask used to convert between
string variable values and real variable values. See the

descriptions of CHR$, S5TR$, and VAL in Chapter 4.

GRiDTask does not support arrays or any other types of structured
variables. Note that you may use "installed" verbs that provide
such capabilities. GSee Appendix H for more details.

GRiDTask allows real variables to be used in boolean expressions, as
follows: a real number is converted to an integer. If the number
is even, it is "false", and if it is odd it is "true". Boolean
expressions can be used with IF statements to control the execution
of GRiDTask statements. There are two built-in functions - the
GRiDTask verbs "FALSE" and "TRUE" - which also can be used in
boolean expressions. See Chapter 4 for more information.

Variable Names

The first character of a variable name must be an alpha character (a
letter). Characters after the first may be either alpha or numeric.

String variables must end with a dollar sign (%).

e.g. " BtringXs "

The following characters are not permitted in variable names:
= () 4, § = " + - % = / \ and "space"

You must also avoid using any of the reserved words listed in
Appendix E when naming variables. If you use any of these words an
error may occur.

Variable Declarations

GRiDTask does not require variable names to be explicitly declared.
You can create a new variable by using it as the destination of an
assignment statement. For example:

topping$ = "pineapple slices"

This statement creates a new string variable topping$ and assigns an
initial value to it - "pineapple slices". If topping$ has
previously been assigned a value, that value is lost.

Variable Scope

Most variables in GRiDTask are defined globally. This includes
branching to another program file with the TASK verb. Within a
procedure you can declare variables that are local to the procedure.
See Appendix H for more details.

3.2 Constants

String Constants
String constants are any text enclosed in double quotes. Here are
three valid string constants:

"I’ve been to the moon and back."

"This constant

is on three

lines."”

"He asked ""Why?"" before I could find the door."

The second example illustrates that a string constant can include
embedded carriage return-linefeeds (CR-LF). This makes it very
important that you remember the second double quote to end the
constant. The third example shows that to embed a double quote
within a string constant, you use two consecutive double quotes.

Real Constants

Real constants are represented in base 10. They can only include
numeric characters and the unary plus and minus sign. Here are
three valid real constants:

J0000 +45.4545 ~7.8

3.3 Operators and Expressions

String Operators

Strings can be concatenated {added together) or compared. When
comparing strings, upper and lower case are not significant. Here
are the operators that can be used with string variables and

constants, listed in order of precedence:

Operation Type of value returned

+ concatenation string

= equals boolean (real)
< not equal to boolean (real)
£ less than boolean (real)
> greater than boolean (real)
= less than or equal to boolean (real)
P greater than or equal boolean (real)

Real Variable Operators

Real variables can be operated on by arithmetic operators and
boolean operators. Here are the operators that can be used with
real variables and constants, listed in order of precedence:

Operation Return
- exponentiation real
* multiplication real
b division real
+ addition real
- subtraction real
MOD modulo divide real
= equals boolean (real)
L not equal to boolean (real)
< less than boolean (real)
> greater than boolean (real)
{= less than or equal to boolean (real)
= greater than or equal boolean f{(real)
NOT not boolean ({(real)
AND and boolean (real)
OR or boolean (real)
XOR exclusive or booclean (real)

Expressions

An expression can be used anywhere a string or real value is
required. Expressions consist of constants, variables, functions,
and operators. Use parentheses for clarity and to specify the order
of evaluation. An example of an expression is as follows:

Feaches = (2 # Grapes) + (Apples / 3)

3.4 Flow Control Constructs available for flow control within a GRiDTask
program include the IF/ELSE/ENDIF and WHILE/WEND verbs.

IF/ELSE/ENDIF statements are used to execute groups of BRiDTask

statements conditionally. WHILE/WEND statements provide looping =
control.

IF/THEN/ELSE blocks may be inserted into WHILE/WEND loops, and
WHILE/WEND loops may be inserted into IF/THEN/ELSE blocks.

For more detail concerning IF/ELSE/ENDIF and WHILE/WEND verbs, refer
to Chapter 4.

3.3 Branching

GRiDTask supports three different types of branching: procedures,
TABK statements, and DO statements.

Procedures

You can define procedures that use parameters and local variables.
When the procedure name (and parameters) is encountered in a
GRiDTask statement, the procedure is executed. When the procedure
execution is complete, GRiDTask returns to the place in the Task
application from which the procedure was called.

Frocedures provide an efficient way to rapidly execute a set of
GRiDTask statements that may be used over and over within a Task
application.

TASK Statements

The TASK verb may be used to execute a group of GRiDTask statements
contained within a "module", or file that is separate from the main
GRiDtask module. A TABK statement causes GRiDTask to execute the
specified file, and then return to the statement following the TASK
statement.

Typically, a module is a group of BRiDTask statements that have a
common purpose and accomplish a given task. Using TASK modules, the
GRiDTask programmer can divide the entire BRiDTask application into
smaller and distinct operations. The BRiDTask application is thus
easier and faster to write and debug.

DO Statements

A string containing a sequence of statements can be executed with a
DO verb. This is similar to procedures, but there are several
limitations. DO statements are used mostly in special circumstances
such as self-modifying code. It is best to avoid the use of DO
statements if possible.

Frocedures, TASK, and DO are described in Chapter 4. See Appendix 1
for performance issues concerning these.

Chapter 4

Sectiomn One — GRiDTask VERBS

This chapter contains detailed descriptions of the verbs of the
GRiDYask language, including functions, procedures and predefined
variables. Note that this manual uses the terms "verbs" and
"statements". OGRiDTask verbs are the commands themselves, such as

uses a GRIDTask verb or verbs. The chapter is arranged
alphabetically and there are some conventions used, as follows:

There is a group of GRiDTask verbs used to perform mathematical
operations. These are placed in a section entitled "GRiDTask Real
Number Functions" at the end of this chapter.

(<} GRiDTask verbs appear in capital letters.
e.qg. AFPENDFILE

o All variable names appear in lowercase letters. If a variable
name consists of two or more words, then words after the first
one may be capitalized.

e.q. apples itemNumber item$
Special Notes:

u} You can continue a BRiDTask statement on a new line by entering
an underscore character () as the last character in the line.
{press RETURN to type the rest of the statement)

o Multiple GRiDTask statements can be placed on one line by
separating them with a colon.

o You can place GRiDWrite text formatting commands (e.g., “ep,
*nl, “sl, etc.) in a GRiDTask program. GRiDTask ignores lines with
a circumflex (") as the first character.

o Many of the examples in this chapter are shown out of context.
As such, they may not run exactly as shown. Also, some of the
examples have not been tested.

o Appendix A is a guick-reference list of the verbs described in
thie chapter (4).

ADDKEYS

NOTES

EXAMPLES

ADDKEYS "encodedKeyStr"

ADDKEYS provides keystrokes to the application running in the
application window. The result of ADDKEYS is similar to actually
typing the keys on the keyboard. The parameter string
"encodedkeyStr" is the sequence of keystrokes to be passed to the
application window. Appendix B explains how keystrokes are encoded
for placement in "encodedKeyStr".

ADDKEYS passes one key at a time to the application window, waiting
for the previocus key to be accepted before sending the next key.

The rate at which the keystrokes are passed can be adjusted with the
SFEED verb. The initial setting is full speed.

If the application window is trying to display a File form, but is
waiting for the FILEFORM verb, then ADDKEYS terminates without
passing any remaining keys to the application window.

FILEFORM " *Bubble Memory "Memos‘Call Summary™Text™"
ADDKEYS "i." i Confirm the File form
ADDKEYS "leiVi.iti"

This example retrieves a text file, erases its contents, and then
saves the file. The first ADDKEYS statement confirms the File form.
The second ADDKEYS statement is equivalent to pressing:

CODE-E "le "
CODE-SHIFT-DownArirow R AV
Confirm AR TP
CODE-T ok
Confirm L P

To type the vertical bar character in GRiDWrite, press
CODE-SHIFT-semicolon.

APPENDFILE

NOTES

EXAMPLE

APPENDFILE addString$, pathnames$

APPENDFILE adds addStrings$ to the end of the file specified by
pathnames. 1§ the file does not already exist, GRiDTask creates a
new one and writes addString$ into it.

Note that if you don’t specify a Kind in pathname$, the Kind Text is
assumed. If you do not specify a Device or Subject, the current
Device and Subject of the last file accessed through GRiDTask or the

application window is assumed.

APPENDFILE sets the ERRORCODE variable to the number of any error
that occurred. 1If no error occurs, then the ERRORCODE variable is
set to (0) zero.

newData$ = "A quick brown fox"
destination$ = "*Hard Disk‘Forms‘Medical~Text™"
APPENDFILE newData$, destination$

In this example, the text “A quick brown for" is appended to the end

of text currently in the file "Medical™Text™" in the Subject "Forms"
on the Device "Hard Disk".

4-3

ASC

NOTES

EXAMPLE

num = ASC (anyString%$)

ASC returns the decimal ASCII value of the first character in the
specified string.

Appendix C contains a table listing the ASCII values associated with
each letter and key combination.

PROCEDURE DisplayAsciiValues theStr#
i =1
WHILE i < LEN(theStr$)
FRINT STR%(ASC(MID% (theStr%,i,1))) + " "
i=1+1
WEND
ENDF

This procedure prints the ASCII values for each character in the
specified string.

BREAK

NOTES

EXAMPLE

E

E
k
t

[}

N
“w

-
I

-
I

E

REAK

xecuting a BREAK statement is the equivalent of pressing a break
ey (specified in a BREAKONKEY statement). The following actions
ake place:

If a break key was earlier enabled by a BREAKONKEY verb, the
break key is disabled.

GRiDTask scans forward through the GRiDTask program searching for
a BREAKRESET statement.

o If a BREAKRESET statement is found, the code following the
statement is executed.

o If a BREAKRESET statement is not found in the program,
GRiDTask halts execution.

ote that BREAK is independent of EREAKONKEY. BREAK executes
hether a BREAKONKEY has been executed or not.

ASK "operation one™text™"
F (ERRORCODE <> 0): EREAK: ENDIF
ASK "operation two“text™"
F (ERRORCODE <> (): BRREAK: ENDIF

FEAKRESET

IF (ERRORCODE <> Q)

TASK "ErrorHandler™Text™"

ENDIF

In this example, two operations are performed via TASK statements.

I

f an error occurs during either of these operations, a BREAK

statement is executed. The BREAK statement causes the program to
immediately branch to an error handler module.

BREAKONKEY

NOTES

EXAMPLES

BREAKONKEY key$

BREAKONKEY specifies a keystroke that causes the following actions
if pressed by the user:

o The break key is disabled.

o GRiDTask scans forward through the GRiDTask program searching for
& BREAKRESET statement.

o If a BREAKRESET statement is found, the statements following
it are executed.

o If a BREAKRESET statement is not found, GRiDTask halts
execution.

key$ is an encoded key that triggers the break, and can be any valid
key. GSee Appendix B for a description of how to encode keystrokes.

To cancel the break key, issue BREAKONKEY with a null parameter as
shown below.

BREAKONKEY ™"
BREAKONKEY "i1z" i At the beginning of the TASK application
breakkeyPressed = TRUE
breakkeyPressed = FALSE
BREAKRESET

IF breakKeyPressed skip if breakKeyFressed = FALSE

statement was encountered

-y an

GRiDTask statements

ENDIF

In this case, if the user presses "iz" then GRiDTask scans forward
to BREAKRESET without executing the statement "breakkKeyPressed =
FALSE". Then breakkKeyPressed is TRUE, so the statements after
BREAKRESET are executed. However, if GRiDTask encounters BREAKRESET

4-5

by sequential execution, then breakkeyPressed is FALSE and the
statements following BREAKRESET are not executed.

4-4

BREAKRESET

NOTES

EXAMPLE

BREAKRESET

EREAKRESET marks the beginning of statements to be executed after a
BREAK has been encountered, or if the user presses a break key
{specified in a BREAKONKEY statement).

BREAKRESET disables any active break key (specified in a BREAKONKEY
statement). Thus, after a BREAKRESET statement is executed, another
BREAKONKEY statement must be executed to reactivate the break key.
For convenience, an example from the BREAKONKEY verb description is
printed here.

3 Enable CODE-Z as the break key.
BREAKONKEY "i1z"
GRiDTask statements
i BRiDTask statements to execute when "iz" is pressed
BREAKRESET

GRiDTask statements

In the above example, when the user presses CODE-z, GRIDTask scans
forward to BREAKRESET, and the statements following it are executed.
Note that these statements will be executed if GRiDTask encounters
them directly, even if the user has not pressed the break key.

4-7

CELLS

NOTES

contents$ = CELLS$

CELL% is a string function which returns the contents of the current
cell in the application window. The value returned is always a
string, even if the cell is displaying a number.

The current cell is the cell containing the blinking cursor.

CELL$ is a method of retrieving information from a wor ksheet,
database, or other table.

To retrieve the contents of a cell in a worksheet:

1. Retrieve the worksheet and GRiDPlan.
2. Move the cell cutline to the desired cell.
3 Use CELLY to return the contents of the cell.

CELL$ works in a GRiDPlan worksheet table, a GRiDFile database
table, a GRiDPlot table, and any other application that displays a
table, such as GRiDMaster. You can also use it to retrieve cell
definitions from a worksheet by moving the cursor to the cell
definition area.

CELL$ cannot be used to return the value af an item in a menu or
form.

If you execute CELL$ when a table is not being displayed or when the
cursor is not blinking in a cell, a GRiDTask error occurs.

See the next page for an example.

EXAMPLE - CELLS

§ retrieve database file
5

FILEFORM DEVICE$ + SUBJECT$ + "Employee Salaries™Database™"
ADDKEYS "1."

Tl

query database for a particular employee
the employee’s name is in the variable "name$"

DDKEYS " :fA - U + nama$ + nun = B "

I> e e cae

iy edtract salary from column C

it

ADDKEVS "102:@" jtwo SHIFT right arrows
salary$ = CELL%

display results

IF LEN(salary$) 0
FRINT name$ + " doesn’t work here.”
ELSE
FRINT name$ + " makes " + salary$ + " dollars per month."
ENDIF

This example illustrates how to use the CELL$ function to extract an
employee’s salary from a database. The following steps occur:

1} First, the Task program retrieves the database file.

2) Then the Task program does a query for a particular employee
name. The program assumes that column A of the database
contains employee names, and the name of the desired employee is

already in a variable called "name$".

3) After completing the guery, the program moves the cell outline
to column C which contains the employee’s salary.

4) The salary is retrieved with the CELL$ function, and displayed
on the screen.

4-9

CENTER

NOTES

EXAMPLES

CENTER "text"

r
CENTER displays its string parameter in the Task window in the
current font. The text is centered on the line where the
GRIDTask invisible cursor is currently located. If the text
does not fit on one line, it is displayed starting at the left
edge of the Task window, and word-wraps on to the next line(s).

A CR-LF is passed at the end of the CENTER statement. This
leaves the cursor at the left edge of the window, one line below
the centered text.

The rate at which text is displayed by the CENTER verb is
controlled by the SPEED verb. The initial setting is full
speed.

CENTER "Welcome to the world of GRiD"
This greeting is centered on the line where the cursor is.

CENTER "Boy Scouts
+

Girl Scouts
+

4-H

Community Health”

This example shows how the parameter string to CENTER can
contain CR-LFs. This statement prints centered text on seven
consecutive lines of the display as shown below.

Boy Scouts
+

Girl Scouts
+
4-H

Community Health

CHANGEKINDS

newPathName$ = CHANGEKIND$ (pathNames$, Kinds$)

NOTES
CHANGEKIND$ is a string function requiring two string
parameters. The first parameter is a file pathname and the
second is a file Kind. CHANGEKIND$ creates a new string which
is the same as PathName$ except with the new Kind.

EXAMPLE

Reformat Historical Quotes Text File
textFile$ = GETFILE$("Select Text file to be reformatted")
FILEFORM "Historical Quotes™Reformat™00"

ADDKEYS "i.itt1."

FILEFORM textFiles$

@n e ‘ax

ADDKEYS ")."

graphFile$ = CHANGEKIND$ (textFile$, "Graph")

FILEFORM graphFile$ + "21" 3 get new file and application
ADDKEYS "j.1."

This program reformats a text file of data that has been
retrieved from a mainframe. It writes the reformatted data to a
graph file.

1) It starts by asking the user to fill in a File form
selecting the text file to be reformatted.

textFile$ = GETFILE®#("Select Text file to be reformatted")
2) It then retrieves a Reformat file.

FILEFORM "Historical Quotes“Reformat™00"
ADDKEYS "j.i1t. "

3) It specifies the text file as the file to be reformatted.

FILEFORM textFile$
ADDKEYS "i."

4) It specifies the output file as having the same name as the
input text file except with a kind of "Graph". It writes the
new graphfile, then brings it intc GRiDFlot.

graphFile$ = CHANGEKINDS (textFile$, "Graph")
FILEFORM graphFile$ + "21" s get new file and application
ADDKEYS "i.1."

CHARWIDTH

width = CHARWIDTH

NOTES
CHARWIDTH is an integer—-value function which returns the width
of the current font in the Task window. The width is measured
in pixels.

EXAMPLE

FRINT "This is your first message"

DELAY 2

FRINT "Your first message used 26 characters,"

PRINT "so it is " + STR$(26 * CHARWIDTH) + " pixels wide"

In this example, the width of the first message (printed in the
current font) is calculated using CHARWIDTH.

CHRS

NOTES

EXAMPLES

stringX$ = CHR$ (num)

The CHR$% function converts a number (0-25%5) to a one-character
string.

Appendix C contains a table showing the numbers associated with

each key or key combination {(one-character strings) that can be
pressed on the kevyboard.

Example 1:

llgll
CHR% (63)

stringX$
stringX$

These two statements are equivalent. They both create a one
character string containing the letter "A".

Example 2:

codeZ$ = CHR%(250)

WHILE CONCHARIN$ <> codel$
WEND

This WHILE/WEND loop continues until a CODE-Z is pressed on the
keyboard.

CLEARMSG

NOTES

EXAMPLE

CLEARMSG

CLEARMSEG removes any messages currently showing in the Task
window. It does not affect the application window.

3 Beginning of Task program

FROCEDURE PauseForkey
STACKMSG "Fress any key to continue®
FAUSE "*
CLEARMSG

ENDF

i Later in the program

FauseForkey

When the procedure "PauseForKey" is executed, it displays a
message and then waits until any key is pressed. It then
removes the message.

CLEARSCREEN

NOTES

EXAMPLE

CLEARSCREEN

CLEARSCREEN erases the entire Task window, including any
messages. It positions the cursor four pixels below and four
pixels to the right of the upper left corner of the Task window.

CURSOR 10,150

FRINT "Welcome to the World of"
PRINT " Portable Computers "
FAUSE "

CLLEARSCREEN

PRINT " Welcome Back"

These statements position the cursor 150 pixels down from the
top and 10 pixels from the left edge of the screen. Then the
words "Welcome to the World of" and "Portable Computers" are
printed starting at this point, and GRiDTask waits until the
user presses a key (PAUSE). Then the entire Task window is
cleared (CLLEARSCREEN), and the message "Welcome Back" is printed
at the top of the screen.

COMMANDL. INE

NOTES

EXAMPLES

COMMANDLINE command$, time

COMMANDLINE executes the command specified in command$. These
are Command Line Interpreter (CLI) commands. "time" tells
BRiDTask the number of seconds to continue executing the
command. Time may be meaningful for some commands and not for

others, as discussed below.

Although the COMMANDLINE statement can execute any program, its
primary purpose is to execute the following types:

o Utilities such as LADT, ACTIVATE, and COFY, which have no
user interface.

o Visual graphic programs, such as SFIRAL, CLOCK, and VECTORS.
These are popular in presentations.

Note that programs run with COMMANDLINE execute and display
within the Task window. COMMANDLINE parameters are specified as
follows:

command$ This contains the CLI command and its parameters,
where applicable. The format and rules for
specifying these commands are given in Appendix C
of the GRiD_Program_Development Guide. Note that
if the Device, Subject, or Title names contain
blanks, the pathname must be enclosed in single
quotes, as shown below.

COMMANDLINE "* *Hard Disk "Demos “Vectors™™ , 5

time Time is used for programs such as SFIRAL and
VECTOR, which run continuously until CODE-ESC is
pressed. Time indicates the number of seconde the
program is to run. At the end of the alloted time,
GRiDTask automatically haltes the program by passing
it & CODE-ESC sequence.

Specify 0 for programs such as COPY and ACTIVATE
that halt automatically after they execute. In all
cases, BRiDTask continues after the program stops
running.

TASKWINDOW 0,0,-1,-1
COMMANDLINE "Vectors", 4
FRINT "Let’s lock at some other capabilities”

This causes Vectors to run in the Task window. After four
seconds, Vectors is ended and GRiDTask continues with the next
Task statement.

COMMANDL INE "Activate modem", 0

This activates the modem. GRiDTask continues with the next Task
statement after completing the "Activate modem" command.

4-17

Comment

NOTES

EXAMPLE

§ comment text ...

Any text following a semicolon is considered to be a comment and
will not be executed. The comment extends to the end of the
current line. Comments can be on lines of their own as well as
following a statement. Blank lines are considered to be
comments.

A semicolon embedded in a string constant is not considered a
comment.

§
} Ask them if they want a printed copy

1
PRINT "Confirm to get a printed copy of this report"

IF ConCharIn$ = CHR$(141) $§ check for a Confirm
ADDKEYS "itivi. "
ENDIF

This example prints a text file if the user confirms. It
contains several comments and a blank line. The first three
lines in the example are comment lines, and there is a comment
at the end of the "IF Concharin$ =..." line.

4-18

CONCHARINS

ch$ = CONCHARINS

NOTES
CONCHARINS (CONsole CHARacter INput) is a string function that
waits until a key is pressed on the keyboard, and then returns
that key as a one-character string.
INKEY$ is a similar function but does not wait for a key to be
pressed.

EXAMPLE

CENTER "Flease press the A or B key"
ch$ = CONCHARINS jwait until the user presses a key

IF (ch$ = "A")

FRINT "Thanks for the A"
ELSE
IF {(ch$ = "B")

PRINT "Thanks for the RB"

ELSE
FRINT "You weren’t listening!"
ENDIF:ENDIF

This program prompts the user to press "A" or "B". It then
executes CONCHARIN®, which returns the next key pressed. If the
user presses upper or lower case "A", then one message is
displayed. If the user presses upper or lower case "B", then
another message is displayed. If neither "A" nor "B" is
pressed, then a third message is displayed.

COFPYFILE

NOTES

EXAMPLE

COPYFILE sourcePath$, destinationPaths$

file with the path name destinationPath$. The source file
remains intact. If the destination file doesn’t exist, it is
created. If the destination file already exists, then its data

is overwritten.

Note that if no Kind is specified in either pathname, then the
Kind Text is assumed. If no Subject or Device is specified,
then the Device and Subject are assumed to be the same as the
Device and Subject of the last file accessed through GRiDTask or
the application window.

COPYFILE sets the ERRORCODE variable to the number of any error
that occurred. If no error occurs, then the ERRORCODE variable
is set to (0) zero.

0ld$ = "Medical “Text™"
new$ = "‘*Hard Disk‘Forms“Dental “Text™"
COPYFILE old$, news

This copies the contents of Medical™Text™ in the current Device

4--20

CURSOR

NOTES

EXAMPLE

CURSOR x, Yy

The CURSOR verb repositions the invisible cursor. When GRiDTask
displays text with the FRINT and CENTER verbs, it uses an
invisible cursor to determine where to start displaying the
text.

The two parameters represent the new ¥ and y coordinates of the
cursor. Location 0,0 represents the upper-left corner of the
Task window.

spacing = 15 i pixel distance between text lines
CENTER "Today’s menu"

CURSOR O, CURY + spacing

CENTER "Lasagna and salad"

CURSOR 0, CURY + spacing i CURSOR statement #2

CENTER "Lamb curry"

CURSOR O, CURY + spacing

CENTER "Fried Chicken"

This program prints four lines in the center of the Task window.
Each line is separated by a 15-pixel gap. By changing the
variable "spacing", you can easily change the spacing of all the
menu items.

Note that after CURSOR statement #2, the cursor has been moved

down four times — two times by the CENTER statements and a total
of 30 pixels by the two CURSOR statements.

4-21

CURX

NOTES

EXAMPLES

& CURY

distanceX = CURX
distanceY = CURY

CURX and CURY are functions which return the current location of
the cursor in pixel coordinates. CURX is the horizontal
distance from the left edge of the Task window to the cursor,
and CURY is the vertical distance from the upper edge of the
Task window to the cursor.

CURSOR CURX - 10, CURY + 15

This statement moves the cursor 10 pixels to the left and 15
pixels down from its current position, whatever that is. If the
cursor starting position is beyond the edge of the Task window,
then printed text may not appear.

DATES

NOTES

EXAMPLE

today$ = DATES

DATE is a string function that returns the date.
The date string is formatted as mm/dd/yy (month/day/year).

I+ the date is not correct, use GRiDManager to set the correct
time and date.

ADDKEYS "Today is " + DATE$ + "."

1f GRiDWrite is running in the application window, then this
statement types a line containing the date into the text file.
The line of text might look like this:

Today is 05/15/85.

DEL AY

NOTES

EXAMPLE

DELAY seconds

DELAY causes the GRiDTask program to wait for the number of
seconds specified.

The maximum delay is 65,335 seconds (about 18 hours). The
minimum delay is 0 (no delay).

DELAY is often used in presentations.

CLEARSCREEN

PRINT "Benefits of Grapefruit Juice vs. Orange Juice
DELAY
FRINT " ¥ More nutritious
DELAY
PRINT
DELAY 2

PRINT " ¥ Less sticky"
DELAY 10

k3

= b

¥ Less expensive

In this program example, DELAY statements are used between the
bulleted items. This causes the Task program to wait two
seconds before displaying the next item. This gives the viewer
time to read each item before displaying the next one.

DEVICES

NOTES

EXAMPLES

devé = DEVICES$

DEVICE® is a string function which returns the current Device.
This string includes leading and trailing backquotes. The
current Device (and Subject) are the same as the Device (and
Subject) of the last file accessed by GRiDTask or the
application window.

DEVICES$ is used to make Task programs run independently of the
Device and Subject where the Task program is stored. Because
the current Device and Subject may change as the GRiDTask
program executes, you may want to save the values (corresponding
to the Device and Subject of the Task program) using DEVICE$ and
SUBJECT$ statements at the beginning of the GRiDTask program.

i This is the beginning of the Task program
TaskDevice$ DEVICE®
TaskSubject$ = SURJECTS

R |

o

i This is later in the Task program
FAINT 10,10, TaskDevice$ + TaskSubject$ + "Dali™Canvas™"

Here, DEVICE$ and SUBJECT® are executed at the beginning of the
Task program. At this time, the Device and Subject are the same
as those of the Task program. Since the Canvas image is known
to be in the same Device and Subject, the string variables
TaskDevice$ and TaskSubject$ can be used to access it. If the
current Device is the Hard Disk, then TaskDevice$ contains the
string " "Hard Disk*®".

FILEFORM DEVICE% + "Frograms*GridWrite™Run Text™"
ADDKEYS "1."

This instructs GRiDTask to look on the current Device for
GRiDWrite.

DIRECTORYS

NOTES

list$ = DIRECTORY$ (mode, path$, match$, delimiter$, sortOrder)

DIRECTORY$ is a string function which returns a list of either
Devices, Subjects, Titles, or Titles with Kinds. Each item in

DIRECTORY$ parameters are as follows:

mode is an integer value - either one, two, three, or four.
Mode specifies the information to be returned as follows:

Items Returned

List of Devices

List of Subjects

List of Titles

List of Titles with Kinds (Title™“Kind™)

L BT §
L]

path$ specifies either the Device, or the Device and Subiect
from which list$ is determined. path$ depends on mode as
follows:

Mode Path

1 Devices Null)

2 Subject Device only (e.g., ""Hard Disk™")
3 Titles Device and Subject (e.g., "‘Bubble

Memory *memos *")
4 Titles and Kinds Device and Subject (e.g., "‘Bubble
Memory *memos ")

gither the Devices, Subjects, or Titles to be listed in the
directory. Wildcard characters can be used to request all files
with a common feature, such as all Titles in a given Subject.

To specify wildcard characters, use an assignment statement such
as: matchs = "8" + CHR$(247)

247 is the decimal equivalent of the wildcard character
(CODE-w). BSee Appendix B for a table of character equivalents.

to appear in list$.

1 specifies ascending order

specifies descending order

EXAMPLE - DIRECTORY$

i Set parameter
mode

path$
match$
files
delimiters$

sortOrder

P
"*Eubble Memory
CHR$(247)

il

list$ = DIRECTORY$ (mode, paths$

In the above example, a list of
Frograms in the Bubble memory i

Setting mode 3 requests a lis
path% must specify the Device a
should loock for Titles. BSince

character, all Titles in path%$

separated from each other with

delimiter$. Finally, the list

ascending order.

constants for DIRECTORY$

‘Programs "

Wildcard match all

« match$, delimiter$, sortOrder)

all the Titles in the Subject
s returned.

t of Titles. Since the mode

nd Subject in which GRiDTask

match$ is the wild-card

are returned. The Titles are
"i", the character specified by
of Titles is returned in

34

DO

NOTES

EXAMPLE

DO code$

DO executes one or more GRiDTask statements in the string
parameter code$. If code$ does not contain valid statements,
then a GRiDTask error occurs. Note that procedures can be used
in BRIDTask, and are superior to DO statements in most cases.
See the description of procedures for more information. It is
recomnended to use DO statements only in special situations

where procedures cannot be used.

code$ = " FRINT ""What is your sign?"" "
DO code%$

In this example, the message "What is your sign?" is printed on
the screen.

DOFORMS

NOTES

formCopy$ = DOFORM$ (msg$, form$, choicelines)

DOFORM$ is a string function that displays a standard GRiD form
in the Task window. DOFORM$ is used with the FORMCHOICE and
FORMCHOICE$ functions to obtain information from the user.

"meg$"” ie a string to be displayed as a message at the bottom of
the form.

"form$" is a string containing all the information needed to
display the form. "form$" contains the following items.

"choicel.ines" is an optional parameter. If it is omitted, then
DOFORM$ displays choices in a horizontal "choice band". If
choicelines is used, it specifies the number of lines to use in
displaying the choices: choices are then displayed in a vertical
column.

The "form$" string uses four special characters:

tildes v
vertical bars d
"at” signs @
carats i

Tildes separate choices from item names and from other choices.
Vertical bars indicate the end of a list of choices. For
example, the string -

lunchForm$ = "Sandwich“Ham™“Cheese™BLT!Drink™Milk~Soda~Juice!"

- displays a form with two items. The name of the first item is
"S8andwich" and the name of the second item is "Drink". The
choices for the "Sandwich" item are "Ham", "Cheese", and "BLT".
The choices for the "Drink" item are "Milk", "Soda", and
"Juice".

Flacing an "at" sign (@) before a choice causes the choice to

appear as the initial setting for its item. Placing a carat (™)
at the beginning of a list of choices makes the item editable.

4-29

For example, the string
lunchForm$ = "Sandwich™Ham“@Cheese“BLT!Drink™~"“Milk“Soda™~Juice!"

displays the same two-item form discussed above. The "at" sign
(@) causes "Cheese" to be the initial choice for the first item.
The carat (") makes the second item - "Drink" - an
editable-choice item. See Figure DOFORM$-1 for an illustration
of the form displayed when the DOFORM$ example program is
executed.

Figure DOFORM$-1. An Example Form - The Lunch Menu

Ha?

Sanduich [Lhaesze |
Drink

Plzaze choose what wou'll haws

DOFORM$ returns a copy of the form string parameter modified to
show the new settings of the form. Specifically, DOFORM#%
inserts "at" signs (@) in the appropriate locations, and if an
editable item has been filled in, DOFORM$ inserts the
user-specified text after the carat (*). The FORMCHOICE and
FORMCHOICE$ functions easily extract the information from the
string returned by DOFORM$.

A form does not have to be confirmed. If the form is not
confirmed, then DOFORM$ returns the form string (second
parameter) unaltered.

The DOFORM$ verb sets the LASTKEY$ variable to whatever key

terminated the form. You must check the LASTKEY$ variable to
determine if the form was confirmed.

4-30

EXAMPLE - DOFORM$

TASEWINDOW 0,0,-1,-1

i Display the form

confirm$ = CHR$(141)

msg$ = "Flease choose what you’ll have"

lunchForm$ = "Sandwich“Ham“@Cheese“BLT!Drink™"“Milk~Soda™~Juice!"
lunch% = DOFORM$ (msg%$, lunchForm$, 3)

IF LASTKEY$% = confirm$

i Extracting information from the form
sandwich = FORMCHOICE (lunch$, 1)
drink$ = FORMCHOICE$ (lunch$, 2)

i Instructions to the sandwich chef
IF sandwich = 1

FRINT "Slice the ham"
ELSE

IF sandwich = 2
PRINT "Slice the mozzarella"
ELSE

IF sandwich = 3

PRINT "Cook the bacon"
ENDIF:ENDIF:ENDIF

3 Responses to the choice of drink
IF drink$ = "Milk"
FRINT "That"11 be 50 cents please"
ELSE
IF drink$ = "Soda"
PRINT "We have cola and orange soda"
ELSE
IF drink$ = "Apple" OR drink$ = "Grape"
FRINT "Yes, we have " + drink$

ELSE

FRINT "We're out of that juice"
ENDIF:ENDIF:ENDIF
ENDIF

This Frocedure displays a form asking the user to specify
choices for lunch, including a sandwich type and a juice type.
It then extracts this information and gives instructions to the
chef on preparing the sandwich, and responses the waiter might
give the customer based on the desired drink.

The first section of the procedure - "Display the form" -
defines and displays this two-item form.

The second section of the procedure - "Extracting information

from the form" - uses the FORMCHOICE and FORMCHOICE$ functions
to read the values that are in the form.

4-31

The third and fourth sections of the procedure — "Instructions
to the sandwich chef" and "Responses to the choice of drink" -
provide actions that might be taken as a result of different
answers given by the user in the form.

DOMENU

NOTES

choice = DOMENU (msg$, items$)

DOMENU is an integer function that displays a GRiD menu in the
Task window.

The first parameter is a string that is displayed as a message
below the menu.

The second parameter is the list of items to appear in the menu.
Each item is separated by a vertical bar (!). To enter a
vertical bar press CODE and SHIFT and ; together.

DOMENU returns an integer indicating which item was selected.

If the first item is selected, DOMENU returns 1. If the second
item is selected, DOMENU returns 2, etc.

The DOMENU verb sets the LASTKEY$ variable to whatever key
terminated the menu. A menu does not have to be Confirmed. You
must check the LASTKEY$ variable to see if the menu was
Confirmed.

See the next page for an example.

EXAMPLE - DOMENU

CLEARSCREEN

CENTER "Automated Sales Analysis Frogram"
§ display main menu
confirmé = CHR$(141)

msq¥$ = "Gelect activity and Confirm"

salesMenu$ "Graph regional datalMail call summaryiCreate
Margin reportiExit"

WHILE TRUE
LastkKey$ = ""
WHILE Lastkey$ <> confirm$ 3§ force them to Confirm
choice = DOMENU (msg$, salesMenus$)
WEND

take appropriate action

s can
i

IF choice = 1

TASK "RegionGraphs™Text™"
ELSE
IF choice = 2

TASK "CallSummary™Text™"
ELSE
IF choice = 3

TASK "MarginReport™Text™"

ELSE L
IF choice = 4
STOF
ENDIF:ENDIF:ENDIF:zENDIF
WEND

This example displays a menu with four items.

The WHILE/WEND loop around the DOMENU statement forces the user
to Confirm the menu.

I the user selects the fourth item on the menu, the program

stops running. If they select any other item, a specified Task
file is executed.

4-34

ELSE

ELSE

NOTES
ELSE is used with IF and ENDIF to conditionally control the
execution of a block of GRiDTask statements. The statements
following ELSE are executed when the condition in the
corresponding IF statement evaluated false.
When using an ELSE verb, it must be the only word on the line.
See IF/ELSE/ENDIF for more information.

EXAMPLE

The example from the "FALSE" verb is repeated here for
convenience.

IF temperature »= 70

WARM = TRUE
ELSE

WARM = FALSE
ENDIF
IF WARM

TASKE "“*w GoToBeach *SantaCruz“Text™"
ELSE

TASK " *w*GoSkiing ‘LakeTahoe™Text™"
ENDIF

In this example, if the temperature is 70 or above, then WARM is
true, and the module "GoToBeach *SantaCruz™Text™" is executed.

1 the temperature is < 70, then WARM is false, and the module
"GoSkiing *LakeTahoe“Text™" is executed.

ENDIF

NOTES

EXAMPLE

ENDIF

ENDIF is used with an IF statement. ENDIF marks the end of the
IF block of GRidTask statements.

See IF/ELSE/ENDIF for more information.

The example from the "CONCHARIN$" verb is repeated here for
convenience.

CENTER "Flease press the A or B key"
ch% = CONCHARINS iwait until the user presses a key

IF {(ch$ = "A")
FRINT "Thanks for the A"
ELSE

"IF {ch$% = "B")

FRINT "Thanks for the R"

ELSE
FRINT "You werent listening'"
ENDIF:ENDIF

This program prompts the user to press "A" or "RB". It then
executes CONCHARINS%, which returns the next key pressed. If the
user presses upper or lower case "A", then one message is
displayed. If the user presses upper or lower case "B", then
another message is displayed. If neither "A" nor "R" is
pressed, then a third message is displaved.

4-36

ENDF

NOTES

EXAMPLE

ENDP

ENDP is used to mark the end of a procedure.

statement in the body of a procedure.

i These statements are in module 1
PROCEDURE SEARCH paraml, param2
statementl
statement2

o mm o

ENDF
GRiDTask statement 1
GRiDTask statement 2

i These statements are in Module 2
GRiDTask statement 3

SEARCH paraml, param2

GRiDTask statement 4

It is the last

In this example, ENDP marks the physical end of procedure
SEARCH. Note that after finishing the procedure SEARCH,
GRiDTask continues execution with GRiDTask statement 4, not

GRiDTask statement 1.

4-37

ERASEBOX

NOTES

EXAMPLE

ERASEBOX topleftX, topleftY, widthX, heighty

ERASEBOX erases a rectangle within the Task window. The first
two parameters specify the top-left corner of the rectangle and
the third and fourth parameters indicate the extent or size of
the rectangle. "widthX" indicates the extent in the %, or
horizontal direction, and "heightY" indicates the extent in the
Y. or vertical direction. A1l the parameters are in pixels.
Using -1 for widthX or heightY extends the specified rectangle
to the edge of the Task window.

ERASEBOX WINDOWWIDTH/2 , 0 , -1 , -1

This statement erases the right half of the Task window, if the
Task window is currently set to the entire available screen.

4-38

ERASEFILE

NOTES

EXAMPLES

ERASEFILE pathname$

Kind Text is assumed. If you do not specify a Subject or
Device, the Device and Subject of the last file accessed through
GRiDTask or the application window is assumed (these are termed

the "current” Device and Subject).
ERASEFILE sets the ERRORCODE variable to the number of any error

that occwred. If no error occurs, then the ERRORCODE variable
is set to (0) zero.

ERASEFILE "CarFarts™Database™"

This causes the file with Title "CarParts" and Kind "Database"
in the current Device and Subject to be erased.

ERASEFILE "*Bubble ‘Junkers‘CarParts™Database™"

This causes the file with Title "CarParts" and Kind "Database"
in the Device "Bubble memory" and Subject "Junkers" to be
erased.

ERRORCODE

NOTES

EXAMPLE

ErrorNum = ERRORCODE
ERRORCODE = Num

ERRORCODE is a predefined number variable. Whenever an
application looks up an error message in the file
"@3ystemErrors", the ErrorCode variable is set to the number of
the error. If the file "@5ystemErrors" is not present,

ERRORCODE still gets set correctly.

The ERRORCODE variable is implemented to allow sophisticated
error recovery while running a GRiDTask program. With good
design, you can minimize the possibility of an application
encountering an error, but in some cases it cannot be avoided.
As an example, poor phone lines or incorrect phone numbers may
interfere with communications products such as GRiDTerm.

By using the ERRORCODE variable, not only can you take
appropriate action based on a detected error, but you can also
display detailed instructions explaining what went wrong, and
suggesting possible solutions.

Because ERRORCODE is a variable, you can set its value as well
as test for its value. You should set ERRORCODE = O (no error)
before performing an operation in which you suspect an error may
occur.

The ERRORCODE variable is also set by the TASK verbs APPENDFILE,
COPYFILE, ERASEFILE, READFILE, and WRITEFILE.

i Print the file
ERRORCODE = O
ADDKEYS "1tivi.i."
i Check for print error
IF ERRORCODE <> ©

TASK "ErrorHandler"
ENDIF

This example prints a file and then checks to see if there were
any errors. If an error was encountered it branches to another
file which can display help information or take other
appropriate actions. See the description of the TASK verb for
another example using the ERRORCODE variable.

4-40

ERRORSTRS

NOTES

EXAMPLE

err$ = ERRORSTRS (errorNum)

ERRORSTR$ is a string function. It returns an error message
string corresponding to errorNum in the file
"@ystemErrors™Text™".

The "@SystemErrors™Text™" file must be in an accessible
"Frograms" Subject, otherwise ERRDRSTR% returns a string
containing just the error number.

ERRORSTR$ does not affect the ERRORCODE variable.

IF ERRORCODE < 0O
STACKMSG ERRORSTR$ (ERRORCODE)
ENDIF

This statement displays a message of the last error that
occurred in the applications window.

4-41

FALSE

variable = FALSE

NOTES
The function FALSE returns the value O (the function TRUE
returns the value -1). FALSE and TRUE can be used in booclean
expressions.
In boolean expressions an even number is false, and an odd
number is true (the low-order bit is used to determine boolean
values - an odd number has a low-order bit = 1, and an even
number has a low-order bit = 0,
EXAMPLE
IF temperature = 70
WARM = TRUE
ELSE
WARM = FALSE
ENDIF
IF WARM
TASK " *w GoToBeach *SantaCruz™Text™"
ELSE
TASK " *w"GoSkiing "LakeTahoe™Text™"
ENDIF

In this example, if the temperature is 70 or above, then WARM is
true, and the module "GoToBeach‘SantaCruz™Text™" is executed.

If the temperature is < 70, then WARM is false, and the module
"GoSkiing "LakeTahoe™Text™" is executed.

4-42

FILEFORM

NOTES

FILEFORM "pathname"

The FILEFORM verb specifies a pathname to be set in the next
File form that appears in the application window.

The format of the FILEFORM parameter is very important. It
should be a complete pathname, followed by two extra characters.
Here is the format:

FILEFDRM " ‘device®subject*title“kind™10"

The last two characters determine the settings of the two
optional items of the File form: "Next action" and "Save
changes".

Their interpretation is shown below.
Next Action - Keep current file

0
1 - Get new file only
2 - Get new file and its application

Save Changes © - Before getting new file
1 - No

1f the last character of the pathname parameter is a tilde (™),
then FILEFORM assumes that you did not append these last two
characters and appends two zeros for you.

1f the first character of the pathname parameter is not a back
quote (%), then FILEFORM assumes that you did not specify a
Device and Subject. It searches for the file in the current
Device and Subject. If the file isn’t found, GRiDTask searches
in the current Device and Programs Subject. If it isn’t found
in either place, an error occurs. As a rule, you should specify
the complete pathname of the file, if possible. Searching for a
file can take several seconds.

The FILEFORM verb does not cause the File form to appear. It
only specifies the default settings for the next File form.

You must perform an ADDKEYS "i." to confirm the File form once
it is displayed. If a second confirm is required to overwrite
an existing file or create a new one, then this must also be
passed with the ADDKEYS verb.

EXAMPLES - FILEFORM
FILEFORM "‘“*Hard Disk "Programs ‘GRiDWrite™Run Text™10"

This statement completely specifies the contents of the next
File form. It does not check that GRiDWrite or even the Hard
Disk is available. If the next File form has the "Next Action"
and "Save Changes" items they will be set to "Get new file only"
and "Before getting new file" respectively.

I+ GRiDWrite was not on the Hard Disk, the File form would say
"Confirm to create new file", a condition you probably didn’t
anticipate. If a Hard Disk was not attached, the application
window would show a system error message.

FILEFORM " *Hard Disk *Frograms‘6RiDWrite™Run Text™"

This statement is similar to the first. However, because the
last character is a tilde, two zeros will be appended to the
filename string.

FILEFORM "GRiDWrite™Run Text™"

This statement’s parameter string does not contain a Device and
Subject. FILEFORM searches for GRiDWrite in the current
Frograms Subject. If GRiDWrite isn’t found in the Frograms
Subject, GRiDTask searches in the current Subject. If GRiDWrite
is not found there you get an error.

FILEFORM DEVICE$% + SUBJECT$ + "Service Revenue™Graph™21"

The parameter in this FILEFORM statement is a complete pathname.
The DEVICE$ and SUBJECT4 functions provide the Device and
Subject portions of the pathname. If you removed the DEVICES$
and SUBJECT4$ functions, the FILEFORM statement would still find
the file "Service Revenue", but it might take longer.

4-44

FINDTITLES

NOTES

EXAMPLE

path$ = FINDTITLES ("Title“Kind™")

FINDTITLE$ is a string function which returns a complete
pathname of a file for which you know only the Title and Kind.
If a file with this Title and Kind cannot be found, FINDTITLE®%
returns a zero length string.

FINDTITLE$ is useful for making a program independent of the
Device and Subject in which it is running. It is also useful
for determining if a particular file exists prior to retrieving
it

The parameter in the FINDTITLE$ statement is a string containing
the Title and Kind portions of a file name. FINDTITLES$
returns the complete pathname where the file is found.

FINDTITLE$ searches for this file in the Subject "Programs" in
all the available Devices. If it is not found in Programs, then
the current Subject is searched. If the file is not found in
the current Subject, then FINDTITLE$ returns a zero length
string.

Note: With some versions of GRiD-0S5, FINDTITLE$ will display a
blinking message, prompting you to insert the diskette
containing the title.

See DEVICE$ and SUBJECTY for more information on making GRiDTask
programs independent of Subjects and Devices.

Make sure floppy with GRiDTerm is in disk drive
done = FALSE

WHILE NOT done

temp$ = FINDTITLE$ ("GRiDTerm™Run Terminal™")
IF LEN(temp$) {> O

e c@au cax

done = TRUE
ELSE
CLEARSCREEN

PRINT "GRiDTerm is not available"
PRINT "Insert the disk labeled ""DataComm"""
PRINT "Press any key when ready to continue"
PAUSE "

ENDIF

4-45

WEND

This program checks to see if GRiDTerm is currently available.
If it can™t find GRiDTerm it prompts the user to insert a
diskette labeled "DataComm" and then tries again. This program
does not proceed until GRiDTerm is available.

FONT

NOTES

EXAMPLES

FONT "pathname"

FONT specifies the font to be used while displaying text in the
Task window. The parameter string is the name of the font file
you want to become the current font.

The Task window always starts out in the Built-In font. You can
subsequently load four additional fonts into memory and quickly
change between them. If you exceed this limit (four loaded plus
the Built-In), an error occurs.

The first time you specify a particular font there will be a
delay while that font is loaded into memory. Fonts remain in
memory until GRiDTask exits or until you execute a FREEFONT
statement. Thus, changing to a font already in memory is fast.

If the pathname parameter has no Kind, then the Kind "Font" is
assumed. If no Device or Subject is specified, FONT looks in
all the available Programs Subjects. If the file is not found
in Frograms, then the current Subject is searched. If it is
still not found, an error occurs.

FONT "ASCIIModern™Font™"

PRINT "This is AsciiModern Text"
DELAY 2

FONT "ASCIITimesRoman™~Font™"

PRINT "This is AsciiTimesRoman Text"

This example loads the ASCIIModern font and prints a message
using this font. After a two second delay, the ASCIITimesRoman
font is loaded and prints another message using this new font.
The Task application can now switch between these two fonts
guickly, or can load one or two more fonts.

It is important that you use identical pathname parameters each
time you change to a particular font. The first time you load a
font the pathname parameter is stored. On subsequent FONT
statements the new pathname is compared to the pathnames of the
fonts that are already loaded. This determines if a font with
the new pathname has already been loaded, or if it needs to be
loaded. For example, the following two statements will
mistakenly load the same font twice.

FONT "GRiD 80"

FONT "GRiD 80“Font™"

3-47

FORMCHOICE

number = FORMCHOICE (forms$, itemNum)

NOTES
FORMCHOICE is an integer-value function used with DOFORM$ to
retrieve information from a user with GRiD forms.
The first parameter supplied to FORMCHOICE is the form string
returned by DOFORM$ (see DOFORM$ for the format of this string).
The second parameter - itemNum - is an integer which specifies
the item of interest in the form.
FORMCHOICE returns the choice setting for the specified item.
See Figure FORMCHOICE-1 for an exampleé of a form.
Ham
Chease
Sanduich [BCT 1
Drink

Flease chooss what aou'll haoe

Figure FORMCHOICE-1. The Lunch Menu

If the user selects the third choice (BLT) for the first item

See the description for FORMCHOICE$, a related string function.
FORMCHOICE$ extracts the text from a form setting.

For convenience, the example for DOFORM$ is repeated below.

4-48

EXAMPLE - FORMCHOICE

TASKWINDOW 0,0,-1,-1

i Display the form

msg$ = "Please choose what you’ll have"

lunchForm$ = "Sandwich™Ham“@Cheese“BLTiDrink™*“Milk“Soda™Juice!"
lunch% = DOFORM$ (msg$, lunchForm$, 3)

i Extracting information from the form
sandwich = FORMCHOICE (lunch$, 1)
drink$ = FORMCHOICE$ (lunch$, 2)

i Instructions to the sandwich chef
IF sandwich = 1

PRINT "Slice the ham"
ELLSE

IF sandwich = 2
FRINT "Slice the mozzarella"
ELSE

IF sandwich = 3

PRINT "Cook the bacon"
ENDIF:ENDIF:ENDIF

i Responses to the choice of drink
IF drink$ = "Milk"
FRINT "That’1ll be 50 cents please"
ELSE
IF drink$ = "Soda"
PRINT "We have cola and orange soda"
ELSE
IF drink$ = "Apple" OR drink% = "Grape"
FRINT "Yes, we have " + drink$

ELSE
PRINT "We're out of that juice"
ENDIF:ENDIF:ENDIF

This Frocedure displays a form asking the user to specify
choices for lunch, including a sandwich type and a juice type.
It then extracts this information and gives instructions to the
chef on preparing the sandwich, and responses the waiter might
give the customer based on the desired drink.

The first section of the procedure - "Display the form" -
defines and displays this two-item form.

The second section of the procedure - "Extracting information
from the form" - uses the FORMCHOICE and FORMCHOICE$ functions
to read the values that are in the form.

The third and fourth sections of the procedure - "Instructions
to the sandwich chef" and "Responses to the choice of drink" -~

4-49

provide actions that might be taken as a result of different
answers ‘given by the user in the form.

4-30

FORMCHOICES

NOTES

choice$ = FORMCHOICE$ (form$, itemNum)

FORMCHOICE$ is a string function used with DOFORM$ to retrieve
information from a user via GRiD forms.

The first parameter supplied to FORMCHODICE$ is the form string
returned by DOFORM$% (see DOFORM$ for the format of this string).
The second parameter - itemNum - is an integer specifying the
item of interest in the form.

FORMCHOICE$ returns the setting for the specified item. If the
item is an editable item, FORMCHDICE$ returns what the user
typed. If the item is a choice item, FORMCHOICE$ returns the
text of the choice. See Figure FORMCHDICE$-1 for an example of
a form.

Sandwich Cheesze
Drink: [Elneaﬁpla 1

Fleaze che

)

vilat woa'll have

Figure FORMCHOICE$-1. The Lunch Menu

In this figure, the user has typed "pineapple" in the form.
When the following statement is executed after the form is
filled in and confirmed -

choice$ = FORMCHOICE$ (form$, 2)

- then choice$ is equal to "pineapple".

EXAMPLE -

Note that FORMCHOICE, a related integer function, returns an
integer value indicating which choice was selected.
FORMCHOICES

TASKWINDOW ©,0,-1,-1

i Display the form

msqg$ = "Please choose what you’ll have"

lunchForm$ = "Sandwich™Ham™“@Cheese™BLT |Drink™"“Milk“Soda™Juice}"
lunch% = DOFORM$ (msg#$, lunchForm$, 3)

i Extracting information from the form
sandwich = FORMCHOICE ({(lunch$, 1)
drink$ = FORMCHOICE$ (lunch$, 2)

i Instructions to the sandwich chef
IF sandwich = 1

FRINT "Slice the ham"

ELSE

IF sandwich = 2

PRINT "Slice the mozzarella"

ELSE

IF sandwich = 3

FRINT "Cook the bacon"
ENDIF:ENDIF:ENDIF

i Responses to the choice of drink
IF drink$ = "Milk"
FRINT "That®1ll1 be 50 cents please"
ELSE
IF drink$ = "Soda"
FRINT "We have cola and orange socda"
ELSE
IF drink$ = "Apple" OR drink$ = "Grape"
PRINT "Yes, we have " + drink$

ELSE
PRINT "We’re out of that juice"
ENDIF:ENDIF:ENDIF

This Procedure displays a form asking the user to specify
choices for lunch, including a sandwich type and a juice type.
It then extracts this information and gives instructions to the
chef on preparing the sandwich, and responses the waiter might
give the customer based on the desired drink.

The first section of the procedure - "Display the form" -
defines and displays this two-item form.

The second section of the procedure - "Extracting information
from the form" - uses the FORMCHOICE and FORMCHOICE$ functions
to read the values that are in the form.

The third and fourth sections of the procedure - "Instructions
to the sandwich chef" and "Responses to the choice of drink" -
provide actions that might be taken as a result of different
answers given by the user in the form.

4-53

FRAMEBOX

NOTES

EXAMPLE

FRAMEBOX topleftX, topleftY, widthx, heightY

FRAMEBOX draws a one-pixel wide frame around a rectangle within
the Task window. The first two parameters specify the top-left
corner of the rectangle, and the third and fourth parameters
indicate the extent or size of the rectangle. "widthX"
indicates the extent in the x, or horizontal direction, and
"heightY" indicates the extent in the y, or vertical direction.
All the parameters are in pixels.

FONT "GRiD 53“Font™"

CURBOR 45,65

FRINT "Up the Down Staircase"
FRAMEROX 40,40,125,40

This example prints a message on the screen, then draws a
one-pixel-wide box around it.

3-54

FREEFONT

NOTES

EXAMPLE

FREEFONT "pathname"

FREEFONT removes a currently loaded font from memory.

The pathname parameter should exactly match the parameter used
with the FONT verb when the font was originally loaded.

If the specified font is not loaded, or if it is the current
font, an error occurs.

There are two reasons you might want to free a font. If you
want to use more than fouw loaded fonts, then you have to remove
some font(s) to make room for new ones. Also you might want to
free the RAM occupied by a font.

GRiDTask frees any loaded fonts when it stops executing.

FONT "ASCIITimesRoman™Font™"

CENTER "This is an example of ASCIITimesRoman text"
DELAY 2

FREEFONT "ASCIITimesRoman™Font™"

This example loads the ABCIITimesRoman font and displays a
message in this font. After two seconds, the font is removed
from memory. Note that the message remains on the screen until
it is erased, even though the font is removed in the FREEFONT
stalement.

4-35

GETFILES
pathName$ = BETFILE$ (msg$)
NOTES

GETFILE$ displays a File form within the Task window, and
returns a string containing the pathname of the file selected by
the user. The string parameter "msg$" is a message displayed
with the File form.

GETFILE$ sets the LASTKEY$ variable to whatever key the user
pressed to terminate the File form.

EXAMPLE
For convenience, the example for the CHANGEKIND$ verb has been
reproduced here.

Reformat Historical Quotes Text File

fextFile$ = GETFILE$("Select Text file to be reformatted")
FILEFORM "Historical Quotes™Reformat™00"

ADDKEYS "i1.it:."

FILEFORM textFile$

ADDKEYS "i."
graphFile$ = CHANGEKIND® (textFile%, "Graph")
FILEFORM graphFile% + "21" s get new file and application

ADDKEYS "i.41."
This program reformats a text file of data that has been
retrieved from a mainframe. It writes the reformatted data to a

graph file.

1) It starts by asking the user to fill in a File form
selecting the text file to be reformatted.

textFile$ = GETFILE$("Select Text file to be reformatted™)
2) It then retrieves a Reformat file.

FILEFORM "Historical Quotes™Reformat™0Q0"
ADDKEYS "i.itt."

3) It specifies the text file as the file to be reformatted.

FILEFORM textFile$
ADDKEYS "i."

4) It specifies the output file as having the same name as the

input text file except with a kind of "Graph". It writes the
new graphfile, then brings it into GRiDFlot.

4-56

graphFile$ = CHANGEKIND® (textFile%, "Graph")
FILEFORM graphFile% + "21" y get new file and application
ADDKEYS "i1.1."

4-57

IF

EL.SE
ENDIF
IF <{expression)>
statement (s)
ELSE
statement (s)
ENDIF
NOTES

The IF, ELSE and ENDIF statements allow for the conditional
execution of a sequence of statements. If the expression
following the IF statement evaluates to TRUE, the statements
between the IF and ELSE are executed, and the statements between
the ELSE and ENDIF are not executed.

If the expression following the IF statement evaluates to FALSE,
the statements between the IF and ELSE are not executed, and the
statements between the ELSE and ENDIF are executed.

The ELSE statement is optional.

You can nest IF ELSE ENDIF statements to any depth. GRiDTask
matches each ENDIF with the most recent IF. If you have unequal
numbers of IF and ENDIF statements, an error occurs. The IF,
ELSE, and ENDIF verbs cannot be on the same line with another

statement.

See next page for example.

4-38

EXAMPLE

This is legal: IF pizzaTopping = anchovies
PRINT "No Thank You"
ELSE
PRINT "I"11 take a slice"
ENDIF
This is illegal: IF pizzaTopping = anchovies

FRINT "No Thank You"
ELSE PRINT "I"11 take a slice" ENDIF

The second example is illegal because the ELSE and ENDIF
statements are on the same line as the second PRINT statement.

This is legal: IF pizzaTopping = anchovies
FRINT "No Thank You"
ELSE:PRINT "I%11 take a slice" :ENDIF

This example is legal because colons separate the statements.

INKEYS

NOTES

EXAMPLES

somekKey$ = INKEY$

INKEY$ is a string function. It returns a one-character string
representing the last unprocessed character typed at the
keyboard. If no character has been typed then INKEY$ does not
wait and retuwrns a zero length string.

CONCHARIN® is a similar function but does wait for a key to be
pressed.

FILEFORM "Sample™Text™"

ADDKEYS "i."

Print the file ten times or until
a CODE-ESC is pressed

s @e @u ‘@&

codeEsc$é = CHR$ (155)

i =1

WHILE (i <= 10) OR (INKEY$ <> codeEsc%)
ADDKEYS "i1tivVi.i.i." 3 print entire file
i=1i+1

WEND

This program prints a file ten times or until CODE-ESC is
pressed. The WHILE statement uses the INKEY$ function to see
what key, if any, has been pressed on the keyboard.

5
i Flush the keyboard gueue

3

WHILE LEN(INKEY$) <> O
WEND

This example empties the keyboard buffer. You might want to do

this before executing a CONCHARIN$ if you suspect that some
unwanted keys are still in the keyboard buffer.

4-60

INFUTS
value$ = INPUTS$ (prompt$, length, height, initValues$)

NOTES
INPUTS receives data input from the user. A prompt and a field
in which to enter data are displayed. INPUT$ returns the

contents of the field. The INPUT$ parameters are used as
follows:

prompt$ appears to the left of the field. It begins at the

current cursor location.

Specify a null value ("") to omit this feature.
INPUT$ is terminated when the user presses ESC, CODE-RETURN

{confirm), or any CODE-key sequence. LASTKEY$ is set to
whatever key terminated the INPUT$ statement.

4-561

EXAMPLE
TASKWINDOW 0,0,-1,-1
CURSOR 2,75

prompt$ = "Type in Name/Rank"
length = 30

height = 2

initValue$ = "Napolean B.
Conqueror "

value$ = INPUTS (prompt$, length, height, initValue%)

In this example, "Type in Name/Rank" is displayed next to a data
field. There are two lines available, each 30 characters long,
for the user to type in a name and a rank. An initial answer
{initValue$) is in the field.

Figure INFUT$-1 illustrates how this appears on the screen.

Tupe in Hame-Rank [Hapolean B.

Congqueror

Figure INFUT$-1. The INFPUTS Field

4-62

INSTALL

NOTES

EXAMPLE

INSTALL pathname$

INSTALL lets you use custom GRiDTask verbs in your GRiDTask
programs. You can program routines in Pascal, PLM, or other
high-level languages and use these new functions to extend the
BRiDTask language. An example is the set of library routines
that display data-entry forms.

In the INSTALL statement, pathname$ specifies the file
containing the library routines. Such files have the Kind
"Library” and are placed in the Subject "Programs”. A complete
pathname (including the Device and Subject) is not required.

For example:
INSTALL "DataEntryForms™Library™"
Note that more than one library may be installed in a GRiDTask

program. See Appendix H for information on the steps required
to develop an INSTALL verb.

This task program illustrates how to install

and use the sample user-written library -

‘Programs ‘Sample™Library™ - in GRiDTask.

The new functions are: CONCAT$, FLASH, MAX, and DIV
TASKWINDOW 0,0,-1,-1

INSTALL DEVICES$ + "Programs‘Sample™Library™"

; -

stris$ = “One and "

str2$¢ = "two and ..."
PRINT CONCATS (stris,str2s)

ws ws we ‘@8 wa ‘@v

v

FLASH: FLASH: FLASH
}
PRINT "This is MAX(4,5)"
PRINT STR$ (MAX(4,3))

9

PRINT "This is DIV (5,PD)"
PRINT STR$ (DIV (5,PI))

STACKMSG "Press any key to exit”
PAUSE ""

In this example, the user-written library "Sample“Library™" is
installed. Then three functions in this library - CONCATS,
FLASH, and MAX are used like any standard GRiDTask verb. These
functions are also in the example described in Appendix H.

4-63

INSTR

NOTES

EXAMPLE

location = INSTR (start, source$, find$)

INSTR finds the location of a string within another string. The
third parameter is the string that you want to find. The second
parameter is the string in which you are looking. The first
parameter is the character location where you want to start the
search. The INSTR function returns the character location where the
string was found. INSTR returns O if the string isn’t found.

source$ "Once upon a time"

find$ = "a"

FRINT "The location of " + find$% + "is " + STR$(INSTR (1, source$,
find$))

This example printe the character location where "a" is found in
"Once upon a time".

INVERTBOX

NOTES

EXAMPLE

INVERTBOX topleftX, topleftY, widthX, heightY

INVERTEOX inverts a rectangle within the Task window. The first
two parameters specify the top-left corner of the rectangle and
the third and fourth parameters indicate the extent or size of
the rectangle. "widthX" indicates the extent in the %, or
horizontal direction, and "heightY" indicates the extent in the
y, or vertical direction. All the parameters are in pixels.

CURSOR 65,65
PRINT "Down the Up Staircase"
INVERTROX 40,40,125,40

This example prints a message on the screen, then inverts a box
containing the message. The message then appears in "inverse
video".

4-44

INVERTLINE

NOTES

EXAMPLE

INVERTLINE x1, yi1, x2, y2

INVERTLINE inverts a line in the Task window. The four
parameters specify the two end points of the line within the
Task window. All the parameters are in pixels.

CURSOR 50,50

PRINT "This is the top portion”
CURSOR 50,150

FRINT "This is the bottom portion"
INVERTLINE 0, 100,300,100

This program prints two messages, then inverts a horizontal line
(300 pixels long) between the two messages. Note that if the
inverted line crosses any pixels already "on", then those pixels
will be turned off. Thus, a line drawn with INVERTLINE is solid
only if all the pixels along the line were dark prior to the
INVERTLINE statement.

ITEMCOUNT

NOTES

EXAMPLE

numltems = ITEMCOUNT (list$, separater$)

ITEMCOUNT is a function which returns the number of items in
list$. The items in list$ are separated by the single character
separaters$.

1t

list$ "Pomegranates#*Kumquats#Rutabagas#*Mangoes"
separaters$ = tg"

numltems = ITEMCOUNT (list$, separaters$)
IF numltems > 3

FRINT "Bring oxen"
ENDIF

In this example, 4 items (separated by the character specified
in separater$) are counted in list$. The variable "numItems"
gets the value 4, so the message is printed.

4-66

LASTKEYS

key$ = LASTKEY$

or
LASTKEYS = key$

NOTES
LASTEEY$ is a pre-defined string variable. It is set to the
lasl key to terminate a form, menu or File form in the Task
window. Menus and forms do not have to be confirmed. The
LASTKEY%$ variable tells you which key was pressed to terminate
the menu or form.
Because LLASTKEY$ is a variable, you can set its value as well as
test for its value.

EXAMPLE
confirm$ = CHR%(141)
LASTEEYS = "»

choice = DOMENU ("You may pick a color", "Blue!Red!Green")
IF (LASTKEY% = confirm$)
GRiDTask statements

ENDIF

In this example, a menu with three color choices is displayed.
The user may select one and then press a key to terminate the
menu. If the user presses CODE-RETURN, then the statements
after IF (LASTHEY$ = confirm$) are executed.

4-67

LASTMESSAGES

NOTES

EXAMPLE

message$ = LASTMESSAGES
or
LASTMESSAGES = message$

LASTMESSAGES is a pre—-defined string variable. It is set to the
last message displayed in the application window. Eecause
LASTMESSAGES is a variable, you can set its value as well as
test for its value.

Some messages - such as messages displayed when CODE-U is
pressed - may not set LASTMESSAGE®#. It is recommended to verify
messages that you want to look at using LASTMESSAGES.

FILEFORM "filename™Terminal™"
ADDKEYS "i.i1ai."
i press softkey 1 to sign-on to host

LASTMESSAGES = ""

ADDKEYS "i1"

IF LASTMESSAGE$ < "" i softkey terminated message
; take appropriate action

ENDIF

This example shows a case where LASTMESSAGE$ is the only method
of determining successful completion of signing on to a host
system. As part of the GRiDTerm terminal descriptor file,
softkey #1 contains the log on sequence. LASTMESSAGES is
checked to see if the softkey timed out.

4-48

LEN

num = LEN (stringX$)

NOTES
LEN returns the length of the specified string.
EXAMPLE

See the program examples for CELL%, FINDTITLE$, INKEY$. The LEN
statement is used in all these examples. The example for the
WHILE verb has been reproduced here for convenience.

found = O
i =0
WHILE i { LEN{inputstringX$)

i=1i+1

IF MID$({inputstringX%$, i, 1) = "?"

found = found + 1

ENDIF
WEND
FRINT "I found " + STR$(found) + " question marks!'"

This example counts the number of question marks in a string

(inputstringX$). It prints a message indicating how many were
found.

4-69

LINEHEIGHT

NOTES

EXAMPLE

height = LINEHEIGHT

LINEHEIGHT is a function which returns the height of the current
font in pixels. Thie is the font last set with the FONT verb.

TASKWINDOW 0,0,-1,-1
FRINT "You cannot fit more than "
FRINT STR&(WINDOWHEIGHT/LINEHEIGHT) + " lines on-screen"

In this example, WINDOWHEIGHT gives the total height of the
available screen. LINEHEIGHT gives the height of characters in
the current font. The ratio of the two numbers gives the
maximum number of lines that can be displayed on the screen.

4-70

LOCATE

NOTES

EXAMPLE

LOCATE x , vy

The LOCATE verb is used to reposition the cursor, and is the
same as the CURSOR verb with one exception:

The LOCATE % and y parameters are in units of characters.

The CURSOR x and y parameters are in units of pixels.

The % and y numbers directly specify the new cursor location.

CURSOR CHARWIDTH, O

FRINT "Fruit and cheese"
LOCATE 1 , 2

FRINT "Spaghetti and salad"
LOCATE 1 , 4

FRINT "Chips and chili”

This program prints three lines in the Task window. Each line

begins the width of one character from the left edge of the Task
window. The lines are separated by blank lines.

4-71

MEMORY

NOTES

EXAMPLE

space = MEMORY

MEMORY is a function that returns the number of free bytes of
memory.

FRINT "The number of free bytes is " + STR$(MEMORY)
DELAY 3

This program prints the amount of MEMORY space by converting the
numeric value to a printable string.

MIDsS

portion$ = MID$ (wholeString$, start, length)

NOTES
MID$ is & string function which returns a portion of a specified
string.
The first parameter is the string from which the portion is
extracted. The second parameter is the character position at
which to start the new portion string. The third parameter is
the length of the portion string.
MID$ retwns a zero-length string if length is zero, or if
start is either zero or greater than the length of the string.
If start + length is greater than the length of the original
string, then MID$% returns a string which only includes
characters from start to the end of wholeString$.

EXAMPLE
found = 0O
i =0
WHILE i < LEN(inputstringX$)

i=1+1

IF MID${inputstringXs%, i, 1) = "?"
found = found + 1
ENDIF
WEND
FRINT "I found " + S5TR$(found) + " question marks!"

This example counts the number of question marks in a string

{inputstringX$). It prints a message indicating how many were
found.

4-73

FPAINT

NOTES

EXAMPLE

PAINT x, y, “"pathname"

FAINT displays a canvas image in the Task window. Canvas files
can be created and modified in GRiDFaint.

The parameters indicate the name of the canvas file to be
displayed and the pixel coordinates within the Task window where
the top-left corner of the canvas image is to be placed.

Any portion of the canvas image extending beyond the edge of the
window is clipped.

It is important that the image be created and saved using
GRiDFaint, as a file with Kind "Canvas". Screenimage files do
not work.

If the pathname has no Kind, then "Canvas" is assumed. If no
Device or Subject is specified, then GRiDTask looks in the
current Device and Subject.

TASKWINDOW 0,0,-1,-1
FAINT 10,10, "Renoir™Canvas™"

When GRiDTask executes this, the image with Title "Renoir" and
Kind "Canvas" in the current Device and Subject is displayed on
the screen. The upper left corner of the Canvas image is placed
10 pixels from the left edge of the Task window and 10 pixels
down from the top edge of the Task window. GRiDTask displays as
much of the image as there is room for.

3-74

SFPFARSEONLY

NOTES

EXAMPLE

$PARSEONLY

$FPARSEONLY causes a GRiDTask file to be checked for syntax
errors without executing it.

$PARSEONLY is useful for finding syntax errors in a new GRIDTask
program without taking time to actually run it. It also
guarantees that every line is checked.

After creating a new program or sequence of code, place the
$FARSEONLY statement at the beginning of the program and run it.
The program won’t execute, but every line will be checked for
syntax errors.

To execute the code, remove the command $PARSEONLY.

SPARSEONLY

GRiDTask statementl
GRiDTask statement2
GRiDTack statementl

e men

When this program is executed in GRiDTask, the syntax of each
statement is checked, but the statements are not actually
executed. To run the program, remove the $PARSEONLY statement.

4-75

FPASSKEYS

NOTES

PASSKEYS keysToFass$, keysToTerminate$

FASSKEYS allows you to specify keys that the user can send to
the application (running in the application window) and keys
that the user can press to terminate the PASSKEYS statement.

keysToPass$ defines the key sequences that, when pressed by the

user, are passed to the application.

keysToTerminate$ defines the key sequences that the user can
press to terminate PASSKEYS.

The variable LASTKEY$ is set to the key that terminates
FASSKEYS. This termination key is not passed to the
application.

You can execute a PASSKEYS statement at any time. If the
application window is waiting for a FILEFORM statement when vyou
execute a PABSKEYS statement, then the application window stops
waiting, and a File form is displayed with its normal defaults.
Similarly, if a File form is being displayed when the FASSKEYS
statement ends, the File form stops being displayed and waits
for the next FILEFORM statement.

See Appendix B for information on how to encode keystrokes. A
null string for either parameter of PASSKEYS is considered as

"all keys."

See the next page for examples.

4-76

EXAMPLES PASSKEYS

FILEFORM " *Hard Disk *Programs *GRiDWrite“Run Text™"
ADDEEYS "i."

HalfWindow = WINDOWHEIGHT/2
TASKWINDOW 0O,Hal fWindow,-1,-1
UFPDATESCREEN

PASSKEYS "", "i1."
FRINT "Welcome back to GRiDTask"

In this example, GRiDWrite is loaded in the application window.
Then the Task Window is set to the bottom half of the screen,
and GRiDWrite updates its window to the top half of the screen.
The user may type any keystrokes except CODE-RETURN, which is
the termination key. This means, for example, that if the user
presses CODE-t (ransfer), the CODE-t menu appears. But if the
user presses CODE-RETURN to "Save a file", the CODE-RETURN
terminates PASSKEYS and the file is not saved (GRiDWrite does
not receive the CODE-RETURN key).

Of course, the termination key(s) could be different so that the
user would have the full use of GRiDWrite, but still be able to
terminate it when ready.

FILEFORM " *Hard Disk ‘Frograms*6GRiDWrite™Run Text™"
ADDKEYS "i."

Hal fWindow = WINDOWHEIGHT/2
TASKWINDOW O,HalfWindow,-1,~1
UPDATESCREEN

keysToFass$ =

"abcdefghi jklmnopqgrstuvwyyz ABCDEFGHIJKLMNOFPERSTUVWXYZ . it id"
PASSKEYS keysToFass$, "iz#x"

PRINT "Welcome back to GRiDTask"

In this example, GRiDWrite is loaded and the user may type any
letter characters, as well as CODE-RETURN {(confirm), CODE-t
(transfer), and CODE-d (duplicate). Note that CODE-keys are
specified with small letters (it).

When the user presses "iz" or "#" or "#", PASSKEYS is terminated
and GRiDTask continues execution with the PRINT statement.

FAUSE

NOTES

EXAMPLES

PAUSE keysToTerminate$

FAUSE allows all keys typed at the keyboard to go directly to
the application window until the user presses one of a set of
keys.

the user, are passed to the application.

The variable LASTKEY$ is set to the key that terminates FAUSE.
This termination key is not passed to the application. If
keysToTerminate$ is zero length (PAUSE "") then FAUSE waits
until any key is pressed.

While executing a PAUSE verb, File forms work "normally": they
do not wait for a FILEFORM verb before appearing.

You can execute a PAUSE statement at any time. If the
application window is waiting for a FILEFORM statement when you
execute a PAUSE statement, then the application window stops
waiting, and a File form is displayed with its normal defaults.
Similarly, if a File form is being displayed when the FAUSE
statement ends, the File form stops being displayed and waits
for the next FILEFORM statement.

Note that the PAUSE verb gives the same result as

FASSKEYS "",keysToTerminates

FAUSE "

This statement waits for any key to be pressed. When the next
key is pressed, the program continues. No keys are passed to
the application.

FAUSE "iz"
This statement waits for a CODE-Z to be pressed. Any other keys
pressed prior to CODE-Z are passed on to the application. This

is a way of turning control of the system over to the user.
Until the user presses CODE-Z, any keystrokes can be pressed.

4-78

FPLAY

NOTES

PLAY musicStrs

The PLAY verb creates music (or other sounds) using a speaker
built-in to your computer. The parameter musicStr$ specifies

present, PLAY statements are ignored.
Notes and Octaves

A..G This specifies a note - A, B, C, D, E, F, or G.
pound sign (#) after the note specifies a sharp
note and a minus sign (-) a flat note.

A6 This says to go up one octave and play the note
A,B,C etc. The octave is raised each time "3>"
executed, up to octave 6. If ">" is specified
again, the note played is in Octave 6.

A,B,C etc. The octave is lowered each time "{"
is executed, down to octave 0. If "{" isg
specified again, the note played is in Octave 0.

0 num This specifies an octave. num is a number from
through & specifying one of the seven octaves
available. The initial octave is 3.

N note# This specifies a note by number. note# is a
number from 1 to B4 specifying one of the 84
possible notes in the 7 available octaves. This
is an alternative to specifying an octave

character "{" or ":*" and a note A,B,C,D,E,F, or

4-79

is

< A..G This says to go down one octave and play the note

0

G.

Duration L duration

Tempo

MN

ML

MS

P pause#

This specifies the duration of notes. duration is
a number from 1 through 64 specifying the length
of all the notes following it. The following
tables show the results for different values of

duration:

Length Equivalent

L1 whole note

L2 half note

L3 one of a triplet of three half
notes (1/3 of a 4-beat measure)

L4 quarter note

LS one of a gquintuplet (1/5 of a
measure)

L6 ong of a quarter note triplet

L&4 sixty—-fourth note

You need not specify L if you want to change the
length of one particular note. Instead, specify
the note followed by the desired length. For
example, Albé is equivalent to L16A. The initial
value is L4.

Music Normal. Each note plays 7/8 of the time as
set by the Length subcommand (L).

Music Legato. Each note plays the full period set
by the Length subcommand (L).

Music Staccato. Each note plays 3/4 of the time
set by the Length subcommand (L).

This specifies a pause. pause# specifies a pause
ranging from 1 through é4. The length is
determined in the same way as the Length command

¢ nda

This is a dotted note (specified as a period).
When specified after a note, its length (as
specified by the Length command) is multiplied by
3/2. When more than one dot is specified after
the note, the length is determined by multiplying
by 3/2 for each dot. For example, "A.." plays 9/4
as long as the value specified by L ni "A..."
plays 27/8 as long. You can alspo specify dots
atter the Pause command (P) to control the length
in the same way.

4-80

T Tnumber

EXAMPLES - PLAY

Subcommand
PLAY "<<CDE"
PLAY ":FGA"
PLAY "R:C"

Tempo. Sets the number of guarter notes in a

255. The default is 120,

Result

Goes down two octaves and plays the notes C, D,
and E {(do re mi)

Goes up one octave and plays the notes F, G, and
A (fa so la).

Flays the note B (la), then goes up one octave
and plays the note C (do).

The following example plays the C major scale, ascending and
descending, starting at Octave 3:

FLAY "03 CDEFGAE:C<BAGFEDC"

4-81

FRINT

NOTES

EXAMPLES

PRINT "text text”

FRINT displays the specified text within the Task window
starting at the current cursor location and using the current
font. If the text reaches the right edge of the window, it
continues on the next line. Words are not broken at the edge of
the window (word wrap).

After executing a FRINT statement, the cursor is positioned at
the left edge of the window, one line below the last character
displayed.

Text that continues below the bottom of the Task window is not
displayed.

If you want to print more than one line at a time, you can let
the text word wrap at the right edge of the window, or you can
force a new line by embedding a CR-LF in the string. In either
case, each new line is left justified to the same position as
the first word in the string.

The rate at which text is displayed by the PRINT verb is
controlled by the SFEED verb. The initial setting is full
speed.

FRINT "

This is a narrow
paragraph. It has
CR-LFs embedded

in it."”

The above command contains CR-LFs in the string and prints out
exactly as you see it. If the cursor is originally at 120,30,
then each of the four lines begins at % position 120.

FRINT "The time is now " + TIME$ + ", do you know where you
are?"

This example illustrates the use of a string variable (TIME$) in
a FPRINT statement. It prints the current time along with the
text.

FPROCEDURE

PROCEDURE procedureName parameter (s)
LOCALS variable(s)
RETURN

ENDP

NOTES

How to Define a Procedure

You can define procedures that use parameters and local
variables. A procedure definition begins with the keyword
FROCEDURE, followed by the name of the procedure and a list of
parameters (optional) separated by commas.

PROCEDURE procedureName parameterl$, parameter?, ...

Like variables, if the name of a parameter ends with a "%" it is
a string parameter: otherwise it is a number. There can be up
to 255 parameters in each procedure.

Next, local variables may be defined.

FROCEDURE procedureName parameterl$, parameter2, ...
LOCALS varl, var2é, ...

Then the body of the procedure follows. The word ENDP is the
last line in the procedure.

PROCEDURE procedureName parameterl$%, parameter?, ...
LOCALS varl, var2$, ...
statements

RETURN

Local variables

Local variables are optional. If used, they are declared
following the procedure declaration. The keyword LOCALS should
be followed by a list of local variable names. There is no
limit to the number of local variables declared. Several LOCALS
statements can be used if desired.

4-83

RETURN

RETURN(s) are optional. If used, they do not have to be at the
end of the procedure. There may be more than one RETURN in a
procedure. GRiDTask returns from the procedure to the statement
following the procedure call when a RETURN is executed or when
the last line in the procedure is executed.

ENDP

ENDF marks the last line of the procedure definition. GRiDTask
returns from the procedure to the statement following the
procedure call when ENDF is executed.

Where to Define a Procedure in the Task program

A procedure definition can be placed anywhere within a program.
You can place the procedure definition at the beginning of a
program, in the middle, or in another file that is accessed with
the TASK command.

The only restrictions are:

1) A procedure’s definition must be encountered before the
procedure is invoked.

2) A procedure can not be defined within the body of another
procedure.

No harm is done if a procedure definition is encountered more
than once. However, if two different procedures are defined
with the same name, an error occurs.

Executing the procedure in the Task program

Executing a procedure is the same as executing any GRiDTask
statement. The number and type of parameters must be correct.
When the procedure is invoked within the GRiDTask program, the
following syntax is used.

procedureName parameterl$, parameter2, ...

Everytime a procedure is executed a new set of local variables

is created, if used. Local string variables are initialized to
zero length strings, and local number variables are initialized
to 0.

Referencing local variablesz and parameters is identical to
referencing global variables. Any new variables created while
executing a procedure are global.

Note that the syntax of a procedure is checked when the

procedure is executed, not when it is defined. See the next
page for an example.

4-84

EXAMPLE - PROCEDURE
; ========= Gtart of procedure Smmnmm=m=

LOCALS characters$

character® = INKEY$

IF character$ <> pause$
RETURN

ELLSE

fontheight = LINEHEIGHT
IF fontheight <> 8 § Change font if not currently GRiD 53
FONT "GRiD S3“font™"
ENDIF
CLEARMSG
STACKMSG "Pause: Press any key to continue"
PAUSE ""
CLEARMSG
IF fontheight = 12
FONT "Ascii9x12“Font™"
ENDIF
IF fontheight = 16
FONT "Asciil2xié“Font™"

ENDIF
ENDIF
ENDF
§ Sz=szo==o= End of procedure SoSmsmmnss
i Beginning of Task program
paused = CHR%$(240) i Pause character (CODE-p)

i Later - in the main body of the program
TASKWINDOW 0,0,-1,-1
Pz
IF Choice = 0
FZ
FONT "Ascii9x12“Font™"
TASK prefx$ + "DemoOne™~Text™"
FONT "Asciil2x1&™Font™"
Pz
ENDIF
FZ

In this program, a procedure - FZ - has been defined to handle
pauses. Each time PZ is encountered, the procedure is executed.
If the user presses CODE-p (pause$) then the next time the
procedure is executed a message is displayed, and the procedure
waits until a key is pressed. The font height upon entering the
procedure is calculated using the LINEHEIGHT verb. This allows
the procedure to print messages in a known font (GRiD 53) but to
return to the font in use when the procedure was called. Note
that in this example, an indicator of the current font could

4-85

have been stored in a parameter passed to the procedure.

4-86

READFILES

NOTES

EXAMPLE

contents$ = READFILE$ (pathname#$)

READFILE$ is a string function which returns the contents of the
file specified by pathname$. The file specified by pathname$
remains unchanged.

Note that if you do not specify the Kind in pathname$, then the
Kind Text is assumed. If you don’t specify a Device or Subject,
then the current Device and Subject of the last file accessed
through GRiDTask or the application window are assumed.

The maximum length allowed for a string variable is 64K bytes,
50 that if you attempt to read a file larger than 64K bytes, a
GRiDTask error occurs.

READFILE% sets the ERRORCODE variable to the number of any error

that occurred. If no error occurs, then the ERRORCODE variable
is set to (0) zero.

pathname$ = "*Floppy Disk*BaseballCards*MickeyMantle™Text™"
statistics$ READFILE% (pathname$)

into the string variable statisticss$.

4-87

RETURN

NOTES

EXAMPLE

RETURN

RETURN is used within procedures. When executed, GRiDTask exits

from the procedure, and returns to the GRiDTask statement
following the procedure call.

RETURN(s) are optional. If used, there may be more than one
RETURN within a procedure, and RETURN verbs may be placed
anywhere within the procedure body. A RETURN is not needed at
the physical end of a procedure.

See the section in Chapter 4 entitled "Frocedures" for an
example using RETURN.

4-88

SCROLL

NOTES

EXAMPLE

SCROLL distance, speed

SCROLL causes the entire Task window to scroll, or move up.

The first parameter is an integer indicating how many pixels to
scroll the Task window. The second parameter is an integer
indicating how fast to scroll the window.

The higher the number, the faster the window scrolls, according
to the following rules: if the number is positive and greater
than zero, then it represents the number of pixels the window
moves in each step. If the number is negative, the window moves
one pixel at a time, with an additional delay between each move.
The additional delay is the absolute value of the number in
milliseconds.

The proper speed is best determined by trial and error, since
the speed of scrolling is affected by the size of the window. A
good strategy is to first try a speed of one. If this is too
slow, then increment the speed value by one until a satisfactory
speed is reached. If a value of one is too fast then try -10,
=20, =30 and so on until a slow enough value is reached.

TASKWINDOW ©0,0,-1,-1

PAINT 10,10, "Renoir™Canvas™" § Canvas height = 150 pixels
DELAY 3

SCROLL 175,55

In this example, the image with Title "Renoir" and Kind "Canvas"
in the current Device and Subject is displayed in the Task
window. After a delay of three seconds, the image scrolls
upward 5 pixels per step until it has moved a total of 175
pixels. Since the Canvas height is 130 pixels and it is
originally 10 pixels below the top of the screen, the image
completely disappears after scrolling up 160 pixels.

4-89

SCROLLBOX

NOTES

EXAMPLE

SCROLLBOX topleftX, topleftY, widthX, heightY, "direction",
distance, speed

SCROLLBOX scrolls a rectangle within the Task window.

The first two parameters - topleftX and toplefty - specify the
top-left corner of the rectangle. The third and fourth
parameters - widthX and heightY - indicate the extent or size of
the rectangle. "widthX" indicates the extent in the Xy OF
horizontal, direction, and "heightY" indicates the extent in the
Yy, o vertical, direction. The first four parameters are in
pixels.

The "direction" parameter is a string indicating which direction
the rectangle should scroll. The possible directions are "up",
"down", "right", and "left". Only the first letter is
significant, and upper or lower case does not matter.

The "distance" parameter is an integer indicating how many
pixels to scroll the rectangle.

The "speed" parameter is an integer indicating how fast to
scroll the rectangle. The higher the number, the faster the
rectangle scrolls, according to the following rules: if the
number is positive and greater than zero then it represents the
number of pixels the rectangle moves in each step. If the
number is negative, the rectangle moves one pixel at a time,
with an additional delay between each move. The additional
delay is the absolute value of the number in milliseconds.

The proper speed is best determined by trial and error, since
the speed of scrolling is affected by both the size of the
rectangle and the direction it is scrolled. A good strategy is
to first try a speed of one. If this is too slow then increment
the speed value by one until a satisfactory speed is reached.

If a value of one is too fast then try -10, =20, -30 and so on
until a slow enough value is reached.

FAINT 10,125, "Buffalo™~Canvas™" ;Canvas = 100 pixels wide, S0
high

DELAY 10

SCROLLBOX 10,125,100,50,"right",210,8

DELAY 10

In this example, the buffalo is "resting” on the left side of

4-90

the Task window for ten seconds. Then it charges to the right
across the Task window.

4-91

SFPEED

NOTES

EXAMPLE

SPEED "str"

SPEED controls how fast the keys specified by the ADDKEYS verb
are fed to the application. SPEED also controls how fast
characters are displayed by the CENTER and PRINT verbs.

The parameter string can be "Fast", "Medium" or "Slow". "Fast"
represents no delay between characters, "medium" is 0.2 seconds
delay and "slow" is 0.3 seconds delay between characters.

The parameter string can also represent the number of
milliseconds delay between characters. To specify a 0.1 second
delay between characters you would use the following statement.

SPEED "100"

The initial setting is "Fast".

Note that some programs, such as terminal emulators connected to
hosts, may not accept keys at the fast rate.

SFEED "Fast"

PRINT "I am an Olympic typist”
SPEED "Medium"

FPRINT "I have pudgy fingers"
SFEED "Slow"

FRINT "I have boxing gloves on"

In this example, the first message is printed on the screen with
no delay between characters. The second message is printed
on-screen with a .2 second delay between characters, and the
third message is printed on-screen with one-half second delay
between characters.

4-92

STACKMSG

NOTES

EXAMPLE

STACKMSG "messageText"

STACKMSG displays messageText as a message at the bottom of the
Task window. If any messages are already displayed, then the
new message appears above them.

The message is displayed in the current font.
If you stack several messages on top of one another, you should
use the sam<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>